Vol. 73, No. 6, November 2018

  Special Reports

Advanced Automotive Semiconductor Technologies

Semiconductor Technologies Supporting Evolution of Automobiles

Trends in CASE for Next-Generation Vehicles and Toshiba’s Approach to Automotive Semiconductor Devices
In line with the recent connected, autonomous, shared, electric (CASE) trends in the global automotive industry, advanced automotive semiconductor devices are becoming increasingly important for the realization of next-generation CASE vehicles. In the field of electrification represented by electric vehicles (EVs) and hybrid EVs (HEVs), semiconductor devices with compact dimensions, light weight, and high efficiency are required to monitor and control motors, batteries, and other devices. In the field of advanced driver-assistance systems (ADAS), high-performance processors for path-planning and decision-making functions as well as highly accurate sensing and recognition functions are required accompanying the increase in demand for automated driving systems. Moreover, for exchanges of information with external equipment by means of cloud computing, communication functions, cooperative functions with mobile devices, high-speed in-vehicle local area network (LAN) functions, and enhanced security functions are required.
In response to these trends, Toshiba Electronic Devices & Storage Corporation is promoting the development of a wide variety of advanced automotive semiconductor devices and contributing to the advancement of CASE technologies.

Sensing Technologies to Support Safe Automated Driving Systems
Innovations in automotive sensing technologies to support safe driving have been advancing in terms of both performance and cost as a result of the practical realization of advanced driver assistance systems (ADAS). In order to realize a high-level automated driving system, light detection and ranging (LiDAR), which can provide information on the peripheral conditions of a vehicle as three-dimensional (3D) point clouds obtained by laser beam irradiation, is essential in addition to conventional sensors including cameras and millimeter-wave radars. An advanced image recognition processor is also necessary to detect and analyze a wide variety of objects using the obtained sensor data.
Toshiba Electronic Devices & Storage Corporation has been developing a photodetector with high sensitivity as well as an analog front-end circuit and distance measurement algorithm to detect small objects at long distances as sensing technologies to realize a long-range and high-resolution LiDAR. We have also been improving the performance of conventional image recognition technologies for our Visconti image recognition processor products. Furthermore, in cooperation with Denso Corporation, we are working on the development of an artificial intelligence technology called deep neural network-intellectual property (DNN-IP) to recognize a wide variety of objects with higher accuracy compared with conventional methods.

Technologies for Motor Driver ICs with Controller to Downsize In-Vehicle Motor Systems
HAGURA Junichiro / OMURA Naoki / TAGUCHI Kazuhiro
Among the large number of moving parts of various sizes used in automobiles, almost all of the mechanically driven parts have been replaced by electrically driven parts using motors in recent years. In the field of motor driver integrated circuits (ICs), technologies for integrating various circuit parts and countermeasures against heat dissipation are essential to achieve a balance between high-density mounting of power semiconductor chips on packages and reduction of the size of packages in order to realize compact in-vehicle motor systems.
Toshiba Electronic Devices & Storage Corporation is engaged in the development of motor driver IC products for automotive use. These products include monolithic ICs equipped with power elements and a controller in one chip, and system in packages (SiPs) equipped with field-effect transistors (FETs) and a controller in one package for high-current applications. The new motor driver IC products were successfully fabricated by optimizing the package design utilizing thermal simulations at the initial stage of development and applying a technology to detect current and temperature while reducing the number of parts.

Technologies to Reduce Power Consumption of Wireless Communication ICs and Audio Power Amplifiers for Automotive Use
KOTO Tsuyoshi / FUKUDOME Kazunori
Accompanying the expanding dissemination of eco-friendly automobiles including electric vehicles, demand has been increasing for reduction of the power consumption of automotive semiconductor devices. In the wireless communication field, attention has been focused on Bluetooth® Low Energy (Bluetooth® LE) integrated circuits (ICs) that make it possible to connect a smartphone not only to car entertainment equipment but also to various in-vehicle electronic systems in order to provide diagnostic information, including remaining battery charge and tire air pressure, with low power consumption. In the field of power amplifiers for in-vehicle audio equipment, both the reduction of power consumption and the suppression of heat generation for space-saving purposes are increasingly required.
Toshiba Electronic Devices & Storage Corporation has released Bluetooth® LE ICs that achieve low power consumption through the application of a low-current receiver architecture and a newly developed low-current radio-frequency (RF) circuit. We have also released a high-efficiency linear power amplifier that achieves both low power consumption and heat generation suppression comparable to those of a digital power amplifier, despite its smaller number of parts similar to the number in a conventional linear power amplifier, through the application of our proprietary technologies. These products are expected to facilitate reduction of the size of in-vehicle electronic systems while meeting the requirements of eco-friendly automobiles.

Technologies for Semiconductor Relay Power Devices Allowing Reductions in Size and Weight of In-Vehicle Equipment
MOGAMI Hiroyuki / NONAKA Kazunari
Demand has been increasing in the automotive field for improvement of fuel consumption in order to reduce carbon dioxide emissions as a global warming countermeasure. On the other hand, the number of in-vehicle equipment has also recently been increasing in order to enhance safety and usability, leading to increased vehicle weight and a consequent deterioration in fuel consumption. The need has therefore arisen for compact and lightweight components for in-vehicle equipment. In particular, there is a trend toward the use of semiconductor relays as a replacement for the large number of conventionally installed mechanical relays that both constrain the placement and hinder the realization of compact and lightweight vehicles.
In line with this trend in the development of semiconductor relays, Toshiba Electronic Devices & Storage Corporation has developed and released products including power metal-oxide-semiconductor field-effect transistors (MOSFETs) and controller integrated circuits (ICs) to control the gate on/off state of power MOSFETs for automotive semiconductor relays. We are also engaged in the development of next-generation products with a reduced mounting area.

Automotive Semiconductor Technologies Contributing to Downsizing of Electric Power Steering Systems
YOSHIHIRA Takayuki / HOKOMOTO Yoshitaka / TSUJIMURA Toshihiro
The dissemination of electric power steering (EPS) systems, which use electric motors to assist the driver of a vehicle in operating the steering wheel, has been expanding due to their ability to both reduce the burden on drivers and enhance the stability of automobiles running at high speed. Moreover, since the EPS system achieves an approximately 5% reduction in fuel consumption compared with traditional hydraulic power steering systems, the number of large-sized vehicles equipped with EPS systems has been increasing as a measure against global warming. In the fields of advanced driver-assistance systems (ADAS) and fully automated driving systems, the steer-by-wire system is attracting attention as a next-generation EPS system for steering control without a mechanical linkage between the steering wheel and steering gear. In particular, it is important to enhance the reliability of steer-by-wire systems so as to avoid the risk of failures by ensuring redundancy of the electronic control units (ECUs). This redundancy, however, leads to a reduction in fuel consumption improvement and constraints on ECU placement due to increases in the number of parts and the size of the ECUs.
To achieve the miniaturization of EPS systems, Toshiba Electronic Devices & Storage Corporation has developed a power metal-oxide-semiconductor field-effect transistor (MOSFET) for driving automotive brushless motors that achieves a reduction in on-resistance by means of a state-of-the-art field plate (FP) structure, as well as efficient heat dissipation through installation of the chip on a double-side-cooling DSOP Advance package. Furthermore, this product complies with the AEC (Automotive Electronics Council)-Q101 automotive reliability standard. We are also promoting the development of compact power MOSFET gate driver intelligent power devices (IPDs) and transient voltage suppressor (TVS) diodes for surge and electrostatic discharge (ESD) protection.

Semiconductor Device Technologies for Battery Monitoring Systems of Eco-Friendly Automobiles
SHIOTANI Toshio / IIDA Akio / EGOSHI Hidenori
In the automobile industry, strengthening of environmental regulations related to automobiles throughout the world has led to the accelerated development of eco-friendly automobiles, including electric vehicles (EVs) and hybrid EVs (HEVs), as a measure against global warming and air pollution. The battery monitoring system (BMS), which controls the charging and discharging of the rechargeable battery system and manages its operating conditions for efficient running, plays a key role in expanding the cruising range of these eco-friendly automobiles.
Toshiba Electronic Devices & Storage Corporation has been developing and supplying various automotive semiconductor devices that are contributing to the enhancement of BMS performance. These include photocouplers to transfer signals between battery monitoring integrated circuits (ICs) and the microcontroller in the BMS circuit, photorelays to switch from preliminary charging to main charging and to detect any ground fault in the BMS circuit, and metal-oxide-semiconductor field-effect transistors (MOSFETs) to implement cell balancing corresponding to increased battery capacity.

Front-Loading of EMC and Thermal Design Technologies to Improve Reliability of Automotive Semiconductor Products
EGAMI Takao / KOMATSU Terumitsu / IMI Hitoshi / NAGATA Makoto
In recent years, the dissemination of electric vehicles and the development of autonomous driving technologies have led to an increase in the number of electronic control units (ECUs) installed in automobiles. In order to assure the reliability of these ECUs, there is a need to solve issues related to the electromagnetic compatibility (EMC) and thermal effects of semiconductor products. An approach to the front-loading of EMC and thermal design technologies is therefore required to reduce the impact of process retrogression and shorten development periods in line with the international trend in the development of next-generation automobiles.
With this as a background, Toshiba Electronic Devices & Storage Corporation has been making efforts to develop front-loading technologies for the EMC and thermal design of automotive semiconductor products. In the field of analog integrated circuits (ICs), we have established development environments that make it possible to improve the accuracy of noise simulations and perform electrothermal circuit simulations taking into consideration the interconnections among devices on an IC. In the field of discrete power devices, we are also developing an electrothermal circuit simulation method for switching applications using power metal-oxide-semiconductor field-effect transistors (MOSFETs).

Reliability and Analysis Technologies to Improve Quality of Automotive Semiconductor Products
WAKAI Nobuyuki / TOYODA Hisashi / ENDO Koichi
The sophistication of in-vehicle electronic equipment resulting from the advancement of technologies for automotive electronics and electroactuation in recent years has given rise to the need for automotive semiconductor products with high quality targeted at achieving zero defects. It is therefore necessary to implement quality and reliability improvement activities at the initial stage of development as well as at the mass production stage.
Toshiba Electronic Devices & Storage Corporation has been engaged in the development of automotive semiconductor products applying the following technologies to attain high quality at the design stage: device structure optimization to improve the reliability of each product, advanced technology to estimate reliability using a test element group (TEG) pattern, and a screening method to detect potential defects. In order to improve upstream design quality, we have also been focusing on development using operating analysis technologies, including lock-in thermography (LIT) and time-resolved emission (TRE) microscopy, as well as improvement of the defect position specification method taking into consideration the effect of X-ray irradiation.


  Feature Articles

Method to Evaluate State of Health of Lithium-Ion Batteries Used in In-Service BESS for Electric Power Systems
YAMAMOTO Takahiro / HATANO Hisaaki / MITSUMOTO Kenji
The installation of stationary battery energy storage systems (BESS) has recently been progressing for the frequency control of power grid lines. However, as the capacity of the lithium-ion rechargeable battery cells used in these stationary BESS systems is subject to deterioration depending on the conditions of use, there is a growing need for soundness evaluation technologies for lithium-ion rechargeable battery cells. Moreover, because the operation of a BESS system connected to an electric power system is characterized by repeated charging and discharging in short cycles, a strong need also exists to minimize the suspension of BESS systems for inspection purposes.
The Toshiba Group is supplying a lineup of stationary BESS systems equipped with its SCiB™ lithium-ion rechargeable battery cells. We have now developed a voltage deviation method to evaluate the state of health (SoH) of SCiB™ cells from charging and discharging data that can be obtained during the operation of a stationary BESS system. By eliminating the need to obtain charging and discharging patterns specifically for evaluation, this method makes it possible to facilitate timely inspections without suspending operation.

Process Planning System to Improve Efficiency of Installation Work at Thermal Power Plant Sites
Demand has been growing to shorten the period required for the construction of new thermal power plants to achieve reductions in fuel costs by realizing highly efficient power generation at an early stage, thereby reducing both the burden on the environment and operating costs. In order to shorten the construction period, improvements in not only the productivity of the factory but also the efficiency of installation work at the site are essential.
Toshiba Corporation has applied its proprietary technologies cultivated through the development of schedulers for build-to-order manufacturing to a schedule planning system for its factories, in order to enhance the sophistication of production management for the manufacturing of equipment for thermal power plants. Based on this know-how, we have also developed a process planning system for installation work at the site. This system includes a construction planning process taking into consideration the on-site restrictions and a work progress management process to optimize the allocation of workers in keeping with the construction plan based on the actual on-site progress data. We have confirmed the effectiveness of this system through its application to piping installation work at a site in Japan.

Technologies to Test HVDC Control and Protection Systems for Power Grid Operation Using Real-Time Simulator
OKUDA Minoru / MASAKADO Nariyasu / KANEDA Keiichi
A high-voltage DC (HVDC) power transmission system being developed by Terna Rete Italia S.p.A., connecting Italy and Montenegro across the Adriatic Sea via a submarine cable of about 400 km in length, will supply 1 GW of power from Montenegro to Italy.
Toshiba Energy Systems & Solutions Corporation has delivered HVDC control and protection systems for the converter stations at both the Italy and Montenegro sites. The HVDC control and protection system ensures smooth operations through multiple automatic control functions that realize stable power transmission in response to the user’s transmission plans and the various phenomena that occur in a power grid. In order to verify these functions in our factory, we have constructed a test environment that can simulate the entire HVDC power transmission system including its associated AC systems, and have been conducting tests in combination with a real-time simulator. From the results of these verification tests, we have confirmed the performance of the system including high-speed response and control stability at the time of disturbances occurring in the grid under conditions similar to its actual operating conditions.

Power Grid Operation Training Simulator System for National Transmission & Despatch Company in Pakistan
SUGIYAMA Hiroaki / INAGAKI Junichi / KASUGA Ken / YOSHIDA Kazuyoshi
In order to secure the stable operation of electric power transmission and distribution systems, it is essential for the operators of such systems to possess high levels of skill and knowledge of power grids. This has led to the need for systematic human resource development using operation training simulators equipped with functions equivalent to those of a supervisory control system for power grids.
Toshiba Energy Systems & Solutions Corporation has delivered a power grid operation training simulator system to National Transmission & Despatch Company (NTDC) in Pakistan. This system consists of two simulators: (1) a substation operation training simulator with simulated functions of main grids and substations that provides trainees with the results of calculations of control parameters including voltage, power flow, and frequency and with the protection relay response in the event of a power system fault; and (2) a protection relay operation training simulator that provides trainees with a better understanding of relay operations in response to a variety of power system faults that could occur on a power grid by connecting actual protection relays to a real-time digital simulator (RTDS). This system is expected to contribute to improvements in the reliability and power security of electric grids in Pakistan by increasing the number of skilled operators, resulting in rapid recovery from problems.

Access Control Gate Replacement Method Using Temporary Gates to Shorten Construction Period while Maintaining Access Control Performance
Access control gates at the entrances of nuclear facilities play a critical role as a physical protection system allowing only authorized people to enter and leave the secured area. At the time of replacing access control gates to meet the need for enhanced security measures or in response to the aging of equipment, it is necessary to maintain their function of preventing unauthorized access. However, the conventional method of replacing multiple access control gates, in which each set of gates is temporarily closed and replaced with new equipment in succession, tends to prolong the construction period as a consequence of the large number of changes required and result in long queues of people waiting due to the decrease in the number of available gates.
To rectify this situation, Toshiba Energy Systems & Solutions Corporation has developed an access control gate replacement method using two types of temporary gates: temporary containerized gates and temporary portable gates. This method makes it possible to shorten the construction period while ensuring access control performance by appropriately using and combining these temporary gates, taking into consideration the actual conditions at the site including constraints on the installation locations and the number of people entering and leaving the premises.

Deep Learning Model Development Platform for SATLYS Toshiba Analytics AI Services
NISHIZAWA Minoru / GOTOU Tetsuya / ETO Masaya
Efforts to develop a wide variety of technologies related to the Internet of Things (IoT), big data, and artificial intelligence (AI) have been actively promoted in the industrial field in recent years. However, this trend is now encountering various issues including the lack of an established standard methodology for the development of AI models, human resources having different experience levels and skills, and diverse development tools.
Under these circumstances, Toshiba Digital Solutions Corporation is engaged in activities to realize digital transformation that is of high value to individual customers by means of its SPINEX Toshiba IoT architecture. As part of these activities, we released SATLYS, a suite of AI analytics services, in October 2017 as a set of new professional services to perform analyses using AI technologies. In order to offer high-quality AI analytics services, we have constructed a platform to store and share the knowledge and proprietary technologies that we have accumulated through the development of deep learning models. This platform makes it possible to reduce the costs of constructing development environments and improve the accuracy of models, resulting in the creation of services with high quality and high efficiency in response to customers' requirements.


  Frontiers of  Research & Development

Technology for Extracting Optimal Combination of Manufacturing Machines to Achieve High Quality and Productivity

* Company, product, and service names appearing in each paper include those that are trademarks or registered trademarks of their respective companies.