
Specification on a Block Cipher : Hierocrypt–L1

Toshiba Corporation

September 2001

Contents

1 Design principle 3
1.1 Data randomizing part . 3

1.1.1 Nested SPN structure . 3
1.1.2 Simplicity and flexibility of the nested SPN structure . . 4

1.2 Key scheduling part . 4

2 Design criteria 5
2.1 Items of design criteria . 5

2.1.1 Security . 5
2.2 Design of the components . 6

2.2.1 s (lower-level S-box) . 6
2.2.2 mdsL (lower-level diffusion) 6
2.2.3 MDSH (higher-level diffusion) 7
2.2.4 P (n) (permutation for key scheduling) 8

3 Algorithm of Hierocrypt–L1 10
3.1 Notations . 10
3.2 Structure . 10

3.2.1 Encryption . 10
3.2.2 Decryption . 11
3.2.3 Key scheduling . 12
3.2.4 Round-dependent constants 12
3.2.5 Preprocessing . 14
3.2.6 Round function for intermediate key (σ-function) 14
3.2.7 Round key generation . 15

3.3 Fundamental operations . 16
3.3.1 Round function(ρ) . 17
3.3.2 XS-function . 17
3.3.3 S-function . 17
3.3.4 s-function . 17
3.3.5 MDSL-function . 18
3.3.6 mdsL-function . 18
3.3.7 MDSH-function . 19

1

c©Toshiba Corporation 2000–2001, All Rights Reserved

3.3.8 P (n)-function . 19
3.3.9 M5-function . 21
3.3.10 MB-function . 22
3.3.11 Fσ-function . 22

2

c©Toshiba Corporation 2000–2001, All Rights Reserved

1 Design principle

We describe the design principle of Hierocrypt–L1 in this section. We consider
that the following points are important.

• Sufficient security against major attacks
• High performance on smartcards and middleware
• Efficiency in implementation
• Transparency of the design

To satisfy these conditions, we determined to use the nested SPN structure in
the data randomizing part, and the Feistel structure in the key scheduling part.

1.1 Data randomizing part

We chose the SP network (SPN, for short) as a fundamental structure of the
proposed ciphers. The SPN structure is a fundamental structure of block ciphers
The SPN structure has the following advantages.

• It has an established design recipe based on the coding theory.
• It does not have plain path unlike the Feistel structure.
• Apparent weak keys are difficult to occur compared with the Feistel struc-
ture.

• High speed encryption in a hardware implementation.
On the other hand, the disadvantages are as follows.

• The area tends to be bigger than the Feistel structure, as the designs of
encryption and decryption are different.

• As the width of diffusion is as twice as the Feistel structure.

1.1.1 Nested SPN structure

The nested SPN structure is a hierarchical structure, where a higher-level S-box
consists of the lower-level SP network. The branch numbers are hierarchically
assured in the nested SP network. The calculational cost is cheaper than the
original homogeneous SPN structure, because the width of diffusion is localized
for the lower-level diffusion layer, and because the word number in MDS coding
decreases in the higher-level diffusion layer. We propose to impose the following
conditions in designing a nested SPN cipher [6, 5].

(i) The final round of SPN consists only of an S-box layer without the follow-
ing diffusion layer in all levels.

(ii) Each diffusion layer is MDS in all levels.

(iii) The number of rounds is even in all levels except for the highest level.

3

(iv) Bit-wise key additions are located directly before all lowest-level S-box
layers and directly after the final lowest-level S-box layer.

The condition (i) is introduced so that both encryption and decryption have
the same structure [9, 3, 4]. The condition (ii) is derived from the fact that the
branch number is assured by two consecutive rounds. The number of parallel
S-boxes is four in the lower level, and two in the higher level.
We chose following parameters for Hierocrypt–L1.

(a) The lowest-level S-box is 8-bit

(b) Data randomizing part consists of the 2-level SPN structure (the higher-
level and the lower-level SPN)

(c) The lower-level structure is 2-round SPN

(d) The diffusion layer sizes are four times as much as that of S-box in the
lower levels, and twice as much as that of S-box in the higher level

These conditions were determined by the following reasons. (a)8-bit is the
upper-bound of S-box size where a table-lookup implementation is realistic. (b)
SP networks with more than two layers are not efficient in calculational cost.
(c) The minimum SP network where the active S-box number can be assured
efficiently is two-round SPN (SPS). (d) The number of parallel S-boxes should
be small to save the calculational cost.

1.1.2 Simplicity and flexibility of the nested SPN structure

The nested SPN structure is very simple and highly transparent. Its S-boxes
and diffusion layers in each level can be designed independent to some extent,
and it is easy to be flexible over the change of block cipher size.

1.2 Key scheduling part

In designing the key scheduling part, it is needed to avoid the decrease of effec-
tive key length because of a simple relations between extended keys as for the
security. At the same time, we impose a condition that the calculational time
for round key is shorter than that for data randomization, so that the initial
delay is sufficiently short.
The key scheduling part consists of the intermediate key update part and the

round key generation part, both parts have iterative round structures. As the
key length of Hierocrypt–L1 is 128-bit, intermediate key update part is designed
so that its block size is 128-bit and its round function is bijective.
An SP network of 128-bit block is expensive in calculational cost. As the

key scheduling part should operates faster than the data randomization part,
we adopt the following constitution.
The 128-bit key data divides into two 64-bit halves. One half is iteratively

updated by a bijective linear transformation. The other half is a 64-bit Feistel
network where the “round key” is supplied from the former one.

4

The intermediate key update part for Hierocrypt–L1 takes a round-trip type,
where the update operations are reversed around the center of round structure.
We call the rounds before the turning-back as plaintext side, and the rounds
after the turning-back as ciphertext side. The round-trip structure gives a short
initial delay even in the on-the-fly decryption.
The round key for the data randomizing part of Hierocrypt–L1 is generated

by concatenating four 32-bit data which are linear combinations of intermediate
key bits. The linear combinations should be appropriately chosen so that weak
keys do not appear, that is, there are no simple relations between the round
keys.
Round-dependent constants are added to the linear transformation part of

intermediate key update part, in order to avoid a periodical pattern to appear.
Here the constants are made from the square roots of the small integers.

2 Design criteria

2.1 Items of design criteria

2.1.1 Security

The most fundamental security criterion is the key length, which express the se-
curity against the exhaustive key search (or the brute force search). Besides the
key length, the security measures against the following attacks are important.

(1a) Differential cryptanalysis;
(1b) Linear cryptanalysis;
(1c) higher-order differential cryptanalysis;
(1d) Interpolation attack;
(1e) SQUARE-dedicated attack;
(1f) truncated differential attack;
(1g) impossible differential attack.

Performance As for the performance in encryption and decryption, the fol-
lowing items are important.

(2a) speed of the data randomizing part;
(2b) key establishment time;
(2c) speed of the on-the-fly key scheduling.

Implementation efficiency The following items are important for the im-
plementation efficiency.

(3a) the object code is short;
(3b) required RAM is small;
(3c) required ROM is small.

5

2.2 Design of the components

2.2.1 s (lower-level S-box)

The S-box is the only nonlinear component. In designing the S-box, we consider
the following points are most important.

(i) the maximum differential/linear probability;

(ii) algebraic order;

(iii) the number of terms in polynomial expressions;

(iv) nonexistence of a simple algebraic structure.

At first, we impose the S-box to take the minimum values for differential
and linear probabilities: The condition can be satisfied by appropriate power
functions over GF(28). But, if the power function is used as the S-box, the
algorithm may be very weak against algebraic attacks such as the higher-order
differential attack or the interpolation attack. Therefore, we insert bijective
linear transformations both before input and after output of the power function.

s(x(8)) = Add(Power(Perm(x(8)))) ,
y(8) = Perm(x(8)) , yi(1) = xπ[i](1) ,

i 1 2 3 4 5 6 7 8
π[i] 3 7 5 8 6 2 4 1

Power : GF(28) → GF(28) ,
Power

(
x(8)

)
= x(8)

247 ,
Add

(
x(8)

)
= x(8) ⊕ 0x7 .

The power index 247 is chosen because it has the maximum value among the
indices where the maximum differential/linear probability is 2−6. The primitive
polynomial for GF(28) is z8 + z6 + z5 + z + 1.
The additional constant 0x7 has been chosen because the input-output Ham-

ming weight distribution is near to that of the random function (the correlation
coefficient is 0.09375).

2.2.2 mdsL (lower-level diffusion)

The design criteria for mdsL is as follows.

(i) maximum distance separable (MDS) map;

(ii) circulant;

(iii) the number of terms in a polynomial expression (bitwise) is maximum.

6

The criterion (i) assures that no less than 5 lower-level S-boxes s are active
in the active higher-level S-box xs containing 8 lower-level S-boxes.
The criterion (ii) is for small implementation.
The criterion (iii) is for a high security against algebraic attacks such as the

higher-order differential cryptanalysis and the interpolation attack. We consider
a combination function of the S-box and mdsL-function connecting to it, which
has an 8-bit input and a 32-bit output. We chose the combination function
whose weighted term sum is maximum under the constraint (i) and (ii). In the
weighted term sum of function, a term of order n is counted as n.
The lower-level diffusion mdsL satisfying the criteria (i)∼(iii) is determined

by the following procedure.

1. Make a circulant matrix with elements which satisfy the criterion (iii).

2. If the matrix is MDS, go to the following clause. Otherwise, return the
preceding clause.

3. Calculate the total sum of weighted term sums for matrix elements for
the matrix and its inverse. And add both total sums. If the result of the
preceding clause is larger than the maximal value before, make it the new
maximal value.

4. Return to the first clause.

5. Choose the one with the lowest calculational cost, from the upper candi-
dates chosen by the term sum.

As the result of the above procedure, the following mdsL is obtained.

C4 65 C8 8B
8B C4 65 C8
C8 8B C4 65
65 C8 8B C4

Here, the matrix elements are expressed in hexadecimal.

2.2.3 MDSH (higher-level diffusion)

In designing MDSH, we consider the following items are important.

(i) MDS matrix

(ii) byte-wise multiple-path property

(iii) the number of connections between bytes should be as few as possible.

The condition (i) indicates that the matrix is an MDS map for two 32-bit
word. Here, let MDS(m,n) be an MDS map for m parallel n-bit words. As
Proposition 2 of references [6, 5] shows, MDS(32, 4) consists of eight parallel
MDS(4, 4). When all MDS(4, 4) are the same, MDSH is nothing but the
combination of byte-wise XOR’s and is expressed as 8×8 matrix.
The SQUARE-dedicated attack is efficient against reduced versions of the

major SPN-type ciphers SQUARE and Rijndael. The attack is applicable to up

7

to 6-round. We let multiple-path property be a property that there are no less
than two byte-wise connections between any pair of higher-level S-boxes(xs) in
two consecutive rounds.
The condition (ii) requires that MDSH satisfies the multiple-path property

for both forward and backward directions. The necessary and sufficient condi-
tion for multiple-path property of MDSH is that all elements of MDS(2, 4) are
elements of { 3, 5, 6, 7, A, B, C, E }.
The condition (iii) is required for a small implementation in hardware.
The circulant condition was not imposed on for Hierocrypt–L1, because an

exhaustive search of good matrices are feasible without the circulant condition
when the matrix size is 2×2.
The higher-level diffusion MDSH satisfying the criteria (i)∼(iii) is deter-

mined by the following procedure.

1. Make a matrix by components of GF(24) which satisfy the multiple-path
property.

2. If the matrix is MDS, go to the following clause. Otherwise, return the
preceding clause.

3. Calculate the inverse matrix. If all elements satisfy the multiple-path
property, go to the following clause. Otherwise, return to the preceding
clause.

4. Let the matrix be a candidate for MDSH.

We have obtained the following matrix by the procedure in the preceding
subsubsection (without circulant condition).

(
5 7
A B

)

Here, the matrix elements expressed in hexadecimal are the elements GF(24),
where the primitive polynomial for GF(28) is z8 + z6 + z5 + z + 1.

2.2.4 P (n) (permutation for key scheduling)

P (n) is used as a diffusion layer of the key scheduling part. We impose the
following conditions.

(i) The calculational time per round is shorter than that for the data ran-
domizing part.

(ii) It has the scalability for the change of input-output data size.

(iii) It is highly diffusive (to make it difficult to infer the encryption key from
the extended key).

(iv) It is a bijective function (to prevent the key degree of freedom from de-
generating).

(v) MDS property is not required (we considered the tradeoff between speed
and security).

8

By the above conditions, we chose the following linear transformation for (4n)-
bit data.

Y(4n) = P (n)
(
X(4n)

)
.

y1(n)

y2(n)

y3(n)

y4(n)

 =

1 0 1 0
0 1 0 1
0 1 1 1
1 0 1 1

x1(n)

x2(n)

x3(n)

x4(n)

 .

This linear transformation is written as the combination of two involution-
type linear transformations.

1 0 1 0
0 1 0 1
0 1 1 1
1 0 1 1

 =

1 0 0 0
0 1 0 0
0 1 1 0
1 0 0 1

1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

 .

9

3 Algorithm of Hierocrypt–L1

3.1 Notations

An n-bit value is basically expressed with the subscript “(n)”. For example, the
value X(n) is an element of GF(2)

n. A value expressed by a capital(s) describes
an element of no less than 16 bits A value expressed by a small letter(s) describes
an element of less than 16 bits.
We adopt the bigendian convention. When a value X(mn) is expressed as a

concatenation of m pieces of n-bit length, each piece is expressed with the sub-
script i(n) (i = 1, 2, . . . ,m), that is X(mn) = X1(n)‖X2(n)‖ · · · ‖Xm(n). Further-
more, X(mn) and Xi(n) are expressed as the following concatenations: X(mn) =
x1(1)‖x2(1)‖ · · · ‖xmn(1) , Xi(n) = xni−n+1(1)‖xni−n+2(1)‖ · · · ‖xni−n+n(1) .
The following shows an example of concatenation expression of a 64-bit value

X(64).

X(64) = X1(32)‖X2(32) ,
Xi(32) = x4i−4+1(8)‖x4i−4+2(8)‖ · · · ‖x4i−4+4(8) , i = 1, 2,
Xj(8) = x8j−8+1(1)‖x8j−8+2(1)‖ · · · ‖x8j−8+8(1) , j = 1, 2, . . . , 8.

Note that the LSB of the value Xi(n) (i=1,2, . . . ,m) is xin(1), which is the
in-th MSB of X(mn) .

3.2 Structure

The structures of data randomization part and the key scheduling part are
described in this section. Fundamental operations used there are described in
the next section.

3.2.1 Encryption

The 6-round encryption of Hierocrypt–L1 consists of 5 operations of round func-
tion ρ, an operation of XS-function, and the final key addition (AK) .
The number of rounds is 6.
The 64-bit value X(i)

(64) is the output of the i-th operation of round function

ρ (i = 1, 2, . . . , 5). The plaintext P(64) is assigned to the 0-th value X
(0)
(64).

The value X(t)
(64) is the output of the t-th operation of ρ-function for the input

X
(t−1)
(64) and the round key K(t)

(128).

X
(t)
(64) = ρ(X(t−1)

(64) ,K
(t)
(128)), t = 1, 2, · · · , 5.

Similarly, X(6)
(64) is the output of XS-function for the input X(5)

(64) and the

final key K(6)
(128).

X
(6)
(64) = XS(X(5)

(64),K
(6)
(128)) .

10

XS

AK

P(64)

C

X
(0)

(64)

K1(64)
(1)

S

S

MDSL

MDSH

s s s s s s s s

s s s s s s s s

mdsL

K2(64)
(1)

mdsL

K1(64)

(1)

K2(64)

(1)

(64)

X
(1)

(64)

X
(2)

(64)

X
(3)

(64)

X
(4)

(64)

X
(5)

(64)

X
(6)

(64)

MDSH

Figure 1: Structure of the algorithm

The ciphertext C(64) is given as the addition (XOR, exclusive or) between
the 6th round output X(6)

(64) and the first half of the final key K
(7)
1(64)

C(64) = X
(6)
(64) ⊕ (K(7)

1(32)‖K(7)
2(32)) .

3.2.2 Decryption

The decryption of Hierocrypt–L1 is the inverse of encryption, and consists of the
final key addition, the inverse of XS-function (XS−1), and 5 inverse operations
of round function (ρ−1).

11

X
(6)
(64) = C(64) ⊕ (K(7)

1(32)‖K(7)
2(32)) ,

X
(5)
(64) = XS−1(X(6)

(64),K
(6)
(128)) ,

X
(t−1)
(64) = ρ−1(X(t)

(64),K
(t)
(128)) , t = 5, . . . , 2, 1.

The plaintext P(64) is given as the final output X
(0)
(64).

P(64) = X
(0)
(64) .

3.2.3 Key scheduling

The main part of key scheduling consists of the intermediate key generation part
and the round key generation part, preceded by the intermediate key initializa-
tion. The intermediate key part recursively generates intermediate key outputs
Z

(t)
(128) (t = 1, 2, . . . , 7), and the round key generation part generates round keys

K
(t)
(128) (t = 1, 2, . . . , 7) from the corresponding intermediate keys.

The intermediate key Z(t)
(64) and the round keyK

(t)
(64) are divided into 4 pieces.

Z
(t)
(128) = Z

(t)
1(32)‖Z(t)

2(32)‖Z(t)
3(32)‖Z(t)

4(32) ,

K
(t)
(128) = K

(t)
1(32)‖K(t)

2(32)‖K(t)
3(32)‖K(t)

4(32) .

To generate the intermediate keys, the σ-function is used for 5 ≤ t ≤ 7,
and the σ−1-function is used for 5 ≤ t ≤ 7. Under the recursion rule, the
intermediate key values are symmetric with regard to the point t = 4.

Z
(t)
(128) = Z

(8−t)
(128) , 5 ≤ t ≤ 7 .

3.2.4 Round-dependent constants

To prevent periodic patterns from appearing in the intermediate key generation,
and to improve resistance against the related key attack, we introduce round-
dependent constants additions to the intermediate key generation part. The
round-dependent constants have been made by combining two from the four
32-bit values which are given as binary expansions of irrational numbers.

H0 = 0x5A827999 = trunc(
√
2/4),

H1 = 0x6ED9EBA1 = trunc(
√
3/4),

H2 = 0x8F1BBCDC = trunc(
√
5/4),

H3 = 0xCA62C1D6 = trunc(
√
10/4),

H4 = 0xF7DEF58A = trunc(
√
15/4),

Where, trunc(x) =
⌊
232x

⌋
.

12

F

F

F

F

F
M5

M5

M5

M5

M5 MB

MB

MB

MB

MB

P(16)

P
(16)

P
(16)-1

P
(16)-1

Z1(32)
(-1)

Z2(32)
(-1)

Z3(32)
(-1)

Z4(32)
(-1)

G
(0)

G
(1)

G
(4)

G
(5)

G
(7)

W
(0)

1 W
(0)

2

W
(3)

1
W

(3)

2

W(5)
1

W
(5)

2

W(7)
1

W
(7)

2

Z(0)
2

Z(0)1 Z(0)4Z(0)3

Z
(3)

1 Z
(3)

2
Z
(3)

3
Z(3)4

Z(5)1 Z
(5)

2 Z(5)3 Z
(5)

4

Z
(7)

1 Z
(7)

2 Z
(7)

3
Z
(7)

4

K(1)1(32)
K(1)2(32)

K(1)3(32)
K(1)4(32)

K
(4)
1(32)

K(4)2(32)
(4)K3(32)

K(4)4(32)

K3(32)
K(5)
4(32)

K3(32)
K
(7)
4(32)

K
(7)
1(32)

K
(7)

2(32)

K
(5)

1(32)

K(5)2(32)

(7)

(5)

}

-1

0

Z
(4)

1 Z
(4)

2

}

}

}

} -1

Z
(4)

3 Z
(4)

4

Figure 2: Key scheduling

13

3.2.5 Preprocessing

The encryption key is used as the intermediate key Z(−1)
(128).

K1(32)‖K2(32)‖K3(32)‖K4(32) = K((128)) ,

Z
(−1)
1(32) = K1(32) , Z

(−1)
2(32) = K2(32) , Z

(−1)
3(32) = K3(32) , Z

(−1)
4(32) = K4(32) .

[Pre-whitening] (σ0-function)
The pre-whitening is done, before iterative operation by the σ-function. The

pre-whitening operation σ0 is made from σ by removing P (16).

Z
(0)
(128) = σ0(Z

(−1)
(128), G

(0)
(32)),

Z
(0)
3(32) =M5(Z

(−1)
3(32))⊕G

(0)
(32) ,

Z
(0)
4(32) =MB(Z

(−1)
4(32)) ,

Z
(0)
1(32) = Z

(−1)
2(32) ,

Z
(0)
2(32) = Z

(−1)
1(32) ⊕ Fσ(Z

(−1)
2(32) ⊕ Z

(0)
3(32)) .

As the round-dependent constant G(0)
(32), the following 64-bit concatenated value

is used.

G
(0)
(32) = H0 .

3.2.6 Round function for intermediate key (σ-function)

The intermediate key Z(t)
(128) is generated by the operation σ up to t = 4, and

afterwards by the inverse operation σ−1. The sequence of intermediate keys is
symmetric with respect to the point t = 4 for this round-trip-type scheduling.

Z
(t)
(128) = Z

(8−t)
(128) , 4 ≤ t ≤ 7 .

We call the region: (1 ≤ t ≤ 4) as the plaintext side, and the other region:
(5 ≤ t ≤ 7) as the ciphertext side, corresponding to the position in the data
randomizing part.

[Iterative update of intermediate key(plaintext side)] (1 ≤ t ≤ 4)

interface Z
(t)
(128) = σ(Z(t−1)

(128) , G
(t)
(32))

definition
W

(t−1)
1(32) ‖W (t−1)

2(32) = P (16)(Z(t−1)
3(32) ‖Z(t−1)

4(32)) ,

Z
(t)
3(32) =M5(W

(t−1)
1(32))⊕G

(t)
(32) ,

Z
(t)
4(32) =MB(W

(t−1)
2(32)) ,

Z
(t)
1(32) = Z

(t−1)
2(32) ,

Z
(t)
2(32) = Z

(t−1)
1(32) ⊕ Fσ(Z

(t−1)
2(32) ⊕ Z

(t)
3(32)) .

14

Table 1: Key schedule of Hierocrypt–L1

round key t operation G
(t)
(32)

− 0 (PW) σ0 H0

K
(1)
(128) 1 σ H1

K
(2)
(128) 2 σ H2

K
(3)
(128) 3 σ H3

K
(4)
(128) 4 σ H4

K
(5)
(128) 5 σ−1 H4

K
(6)
(128) 6 σ−1 H3

K
(7)
(128) 7 σ−1 H2

[Iterative update of intermediate key(ciphertext side)] (5 ≤ t ≤ 7)

interface Z
(t)
(128) = σ−1(Z(t−1)

(128) , G
(t)
(32))

definition
Z

(t)
1(32) = Z

(t−1)
2(32) ⊕ Fσ(Z

(t−1)
1(32) ⊕ Z

(t−1)
3(32)) ,

Z
(t)
2(32) = Z

(t−1)
1(32) ,

W
(t)
1(32) =MB(Z

(t−1)
3(32) ⊕G

(t)
(32)) ,

W
(t)
2(32) =M5(Z

(t−1)
4(32)) ,

Z
(t)
3(32)‖Z(t)

4(32) = P (32)−1
(W (t)

1(32)‖W (t)
2(32)) .

3.2.7 Round key generation

The different rules are applied to generate a round key from the corresponding
intermediate key for the plaintext side and the ciphertext side.

[Round key generation(plaintext side)] (1 ≤ t ≤ 4)

V
(t)
(32) = Fσ(Z

(t−1)
2(32) ⊕ Z

(t)
3(32)) ,

K
(t)
1(32) = Z

(t−1)
1(32) ⊕ V

(t)
(32) ,

K
(t)
2(32) = Z

(t)
3(32) ⊕ V

(t)
(32) ,

K
(t)
3(32) = Z

(t)
4(32) ⊕ V

(t)
(32) ,

K
(t)
4(32) = Z

(t−1)
2(32) ⊕ Z

(t)
4(32) .

15

[Round key generation(ciphertext side)] (5 ≤ t ≤ 7)

V
(t)
(32) = Fσ(Z

(t−1)
1(32) ⊕ Z

(t−1)
3(32)) ,

K
(t)
1(32) = Z

(t)
1(32) ⊕ Z

(t−1)
3(32) ,

K
(t)
2(32) =W

(t)
1(32) ⊕ V

(t)
(32) ,

K
(t)
3(32) =W

(t)
2(32) ⊕ V

(t)
(32) ,

K
(t)
4(32) = Z

(t−1)
1(32) ⊕W

(t)
2(32) .

3.3 Fundamental operations

In this section, we explain fundamental operations using in the encryption al-
gorithm explained in a previous section. Fig 3 summarize relation among fun-
damental operations.

s

mdsL mdsL

MDSH

S

MDSL

S

XS

X

Y

K

(64)

(64)

(128)

K1(64)

K2(64)

s s s s s s s

s s s s s s s s

x1(8) x2(8) x3(8) x4(8) x5(8) x6(8) x7(8) x8(8)

x1(8) x2(8) x3(8) x4(8) x5(8) x6(8) x7(8) x8(8)

X1(32) X2(32)

Figure 3: Summary of functions

16

3.3.1 Round function(ρ)

The ρ-function, which is the round function of the data randomization part, is
a composite function of the XS-function and the MDSL-function. The input
data are the X(64) and the K(128) .

interface Y(64) = ρ
(
X(64),K(128)

)
definition
ρ

(
X(64),K(128)

)
=MDSH

(
XS

(
X(64),K(128)

))
.

3.3.2 XS-function

XS-function is a composite function of the S-function, key addition, andMDSL-
function.

interface Y(64) = XS
(
X(64),K(128)

)
definition
K1(64)‖K2(64) = K(128)

XS
(
X(64),K(128)

)
= S

(
MDSL

(
S

(
X(64) ⊕K1(64)

)) ⊕K2(64)

)
.

3.3.3 S-function

The S-functions consists of parallel operations of s-function.

interface Y(64) = S
(
X(64)

)
definition
x1(8)‖x2(8)‖ · · · ‖x8(8) = X(64) ,
Y(64) = s(x1(8))‖s(x2(8))‖ · · · ‖s(x8(8)) .

3.3.4 s-function

The s-function is a nonlinear transformation for 8-bit input/output value, which
is given as the following table where all numbers are represented in hexadecimal.

interface y(8) = s(x(8))
definition
(s(00) s(01) s(02) . . . s(0F) s(10) s(11) . . . s(FF)) =
(07 FC 55 70 98 8E 84 4E BC 75 CE 18 02 E9 5D 80
1C 60 78 42 9D 2E F5 E8 C6 7A 2F A4 B2 5F 19 87
0B 9B 9C D3 C3 77 3D 6F B9 2D 4D F7 8C A7 AC 17
3C 5A 41 C9 29 ED DE 27 69 30 72 A8 95 3E F9 D8
21 8B 44 D7 11 0D 48 FD 6A 01 57 E5 BD 85 EC 1E
37 9F B5 9A 7C 09 F1 B1 94 81 82 08 FB C0 51 0F
61 7F 1A 56 96 13 C1 67 99 03 5E B6 CA FA 9E DF
D6 83 CC A2 12 23 B7 65 D0 39 7D 3B D5 B0 AF 1F
06 C8 34 C5 1B 79 4B 66 BF 88 4A C4 EF 58 3F 0A
2C 73 D1 F8 6B E6 20 B8 22 43 B3 33 E7 F0 71 7E
52 89 47 63 0E 6D E3 BE 59 64 EE F6 38 5C F4 5B
49 D4 E0 F3 BB 54 26 2B 00 86 90 FF FE A6 7B 05
AD 68 A1 10 EB C7 E2 F2 46 8A 6C 14 6E CF 35 45
50 D2 92 74 93 E1 DA AE A9 53 E4 40 CD BA 97 A3
91 31 25 76 36 32 28 3A 24 4C DB D9 8D DC 62 2A
EA 15 DD C2 A5 0C 04 1D 8F CB B4 4F 16 AB AA A0) .

17

3.3.5 MDSL-function

The MDSL-function consists of parallel operations of mdsL-function for 32-bit
subdata.

interface Y(64) =MDSL

(
X(64)

)
definition
X1(32)‖X2(32) = X(64) ,
Y(64) = mdsL(X1(32))‖mdsL(X2(32)) .

3.3.6 mdsL-function

The mdsL-function is a linear transformation which is represented by 4 × 4
matrix multiplication where all matrix and vector elements are regarded as
elements of GF(28).

interface Y(32) = mdsL(X(32))
definition
x1(8)‖x2(8)‖x3(8)‖x4(8) = X(32) ,
Y(32) = y1(8)‖y2(8)‖y3(8)‖y4(8) ,

y1(8)

y2(8)

y3(8)

y4(8)

 =

C4 65 C8 8B
8B C4 65 C8
C8 8B C4 65
65 C8 8B C4

x1(8)

x2(8)

x3(8)

x4(8)

 .

The inverse function of mdsL-function, mds−1
L -function is given by following

definition.

interface X(32) = mds−1
L (Y(32))

definition
y1(8)‖y2(8)‖y3(8)‖y4(8) = Y(32) ,
X(32) = x1(8)‖x2(8)‖x3(8)‖x4(8) ,

x1(8)

x2(8)

x3(8)

x4(8)

 =

82 C4 34 F6
F6 82 C4 34
34 F6 82 C4
C4 34 F6 82

y1(8)

y2(8)

y3(8)

y4(8)

 .

Here, 8-bit data x(8) and the matrix element a (in hexadecimal) are regarded
as elements of GF(28) related as follows.

x(8) ⇔
8∑

i=1

xi(1)z
8−i , a =

7∑
i=0

ai2i ⇔
7∑

i=0

aiz
i .

The polynomial p(z) = z8+ z6 + z5 + z +1 is used as the primitive polynomial
for the Galois field GF(28).

18

3.3.7 MDSH-function

The MDSH-function is a linear transformation consisting of exclusive or’s be-
tween 8-bit subdata xi(8) (∈ GF(2)8), where i = 1, 2, . . . , 16 ; and MDSH is
represented by the following matrix form.

interface Y(64) =MDSH

(
X(64)

)
definition
x1(8)‖x2(8)‖ · · · ‖x8(8) = X(64) ,
Y(64) = y1(8)‖y2(8)‖ · · · ‖y8(8) ,

0
BBBBBBBBBB@

y1(8)

y2(8)

y3(8)

y4(8)

y5(8)

y6(8)

y7(8)

y8(8)

1
CCCCCCCCCCA

=

0
BBBBBBBBBB@

1 0 1 0 1 1 1 0
1 1 0 1 1 1 1 1
1 1 1 0 0 1 1 1
0 1 0 1 1 1 0 1
1 1 0 1 0 1 0 1
1 1 1 0 1 0 1 0
1 1 1 1 1 1 0 1
1 0 1 0 1 0 1 1

1
CCCCCCCCCCA

0
BBBBBBBBBB@

x1(8)

x2(8)

x3(8)

x4(8)

x5(8)

x6(8)

x7(8)

x8(8)

1
CCCCCCCCCCA

.

The inverse function of MDSH-function, MDS−1
H -function is given by fol-

lowing definition.

interface X(64) =MDS−1
H (Y(64))

definition
y1(8)‖y2(8)‖ · · · ‖y8(8) = Y(64) ,
X(64) = x1(8)‖x2(8)‖ · · · ‖x8(8) ,

0
BBBBBBBBBB@

x1(8)

x2(8)

x3(8)

x4(8)

x5(8)

x6(8)

x7(8)

x8(8)

1
CCCCCCCCCCA

=

0
BBBBBBBBBB@

1 0 1 1 1 1 0 1
0 1 0 1 1 1 1 0
1 0 1 0 1 1 1 1
0 1 1 0 1 0 1 0
1 0 1 0 0 1 0 1
1 1 0 1 1 0 1 0
1 1 1 0 1 1 0 1
0 1 0 1 1 0 1 1

1
CCCCCCCCCCA

0
BBBBBBBBBB@

y1(8)

y2(8)

y3(8)

y4(8)

y5(8)

y6(8)

y7(8)

y8(8)

1
CCCCCCCCCCA

.

3.3.8 P (n)-function

The P (n) function consists of the a linear transformation for the input X(4n)

which is a concatenation of four n-bit values xi(n) (i = 1, 2, 3, 4) where each

19

element is regarded as an element of GF(2)n.

interface Y(4n) = P (n)
(
X(4n)

)
definition
x1(n)‖x2(n)‖x3(n)‖x4(n) = X(4n) ,
Y(4n) = y1(n)‖y2(n)‖y3(n)‖y4(n) ,

y1(n)

y2(n)

y3(n)

y4(n)

 =

1 0 1 0
0 1 0 1
0 1 1 1
1 0 1 1

x1(n)

x2(n)

x3(n)

x4(n)

 .

The inverse function P (n)−1
, is given by the following equation.

interface X(4n) = P (n)−1 (
Y(4n)

)
definition
y1(n)‖y2(n)‖y3(n)‖y4(n) = Y(4n) ,
X(4n) = x1(n)‖x2(n)‖x3(n)‖x4(n) ,

x1(n)

x2(n)

x3(n)

x4(n)

 =

1 1 1 0
1 1 0 1
0 1 1 0
1 0 0 1

y1(n)

y2(n)

y3(n)

y4(n)

 .

x x x x1(n) 2(n) 3(n) 4(n)

1(n) 2(n) 3(n) 4(n)
y y y y x x x x1(n) 2(n) 3(n) 4(n)

1(n) 2(n) 3(n) 4(n)
y y y y

P (n)-function P (n)−1
-function

Figure 4: P (n)-function and P (n)−1
-function

20

3.3.9 M5-function

The M5-function consists of a 32-bit linear transformations, where each 8-bit
subdata is regarded as an element of GF(2)8.

interface Y(32) =M5

(
X(32)

)
definition
x1(8)‖x2(8)‖x3(8)‖x4(8) = X(32) ,
Y(32) = y1(8)‖y2(8)‖y3(8)‖y4(8) ,

y1(8)

y2(8)

y3(8)

y4(8)

 =

1 0 1 0
1 1 0 1
1 1 1 0
0 1 0 1

x1(8)

x2(8)

x3(8)

x4(8)

 .

x x x x1(8) 2(8) 3(8) 4(8)

1(8) 2(8) 3(8) 4(8)y y y y

x x x x1(8) 2(8) 3(8) 4(8)

2(8)1(8) 3(8) 4(8)
yy y y

M5-function MB-function

Figure 5: M5-function and MB-function

21

3.3.10 MB-function

The MB-function consists of a 32-bit linear transformations, where each 8-bit
subdata is regarded as an element of GF(2)8.

interface Y(32) =MB

(
X(32)

)
definition
x1(8)‖x2(8)‖x3(8)‖x4(8) = X(32) ,
Y(32) = y1(8)‖y2(8)‖y3(8)‖y4(8) ,

y1(8)

y2(8)

y3(8)

y4(8)

 =

0 1 0 1
1 0 1 0
1 1 0 1
1 0 1 1

x1(8)

x2(8)

x3(8)

x4(8)

 .

3.3.11 Fσ-function

The Fσ-function is a nonlinear function which consists of the s-functions and
the P (n)-functions.

interface Y(32) = Fσ

(
X(32)

)
definition
x1(8)‖x2(8)‖x3(8)‖x4(8) = X(32) ,
Y(32) = P (8)

(
s(x1(8))‖s(x2(8))‖s(x3(8))‖s(x4(8))

)
.

s

(8)

XY (32)(32)

(n)(n) s

s

s

P

Figure 6: Fσ-function

References

[1] E. Biham and A. Shamir. Differential cryptanalysis of DES-like cryptosys-
tems. Journal of Cryptology, Vol. 4, No. 1, pp. 3–72, 1991.

[2] M. Matsui. Linear cryptanalysis method for DES cipher. In Eurocrypt’93,
LNCS 765, pp. 386–397. Springer Verlag, 1994.

22

[3] J. Daemen, L.R. Knudsen, and V. Rijmen. The block cipher SQUARE. In
Fast Software Encryption (4), LNCS 1267, pp. 149–165, 1997.

[4] J. Daemen and V. Rijmen. AES Proposal: Rijndael, 2000.

[5] K. Ohkuma, H. Muratani, F. Sano, and S. Kawamura. Specification and
assessment of the cipher Hierocrypt. Technical Report of IEICE(Japan)
ISEC2000-7, 2000.

[6] K. Ohkuma, H. Muratani, F. Sano, and S. Kawamura. The block cipher
Hierocrypt. In Selected Areas in Cryptography 2000, LNCS 2012, pp.72–88,
2000.

[7] S. Hong, S. Lee, J. Lim, J. Sung, and D. Cheon. “Provable security against
differential and linear cryptanalysis for the SPN structure”. In Fast Soft-
ware Encryption 2000, LNCS 1978, Springer-Verlag, pp.273–283, 2000.

[8] L.R. Knudsen and T.A. Berson. “Truncated differentials of SAFER”. In
Fast Software Encryption (5), pp. 15–25, LNCS 1039, 1996.

[9] V. Rijmen, J. Daemen, B. Preneel, A. Bosselaers, and E. DcWin. The
cipher shark. In Fast Software Encryption(3), LNCS 1039, pp. 99–112,
1996.

[10] S. Lucks. “Attacking seven rounds of Rijndael under 192-bit and 256-bit
keys”. In The third AES Conference, 2000.

[11] M. Matsui. Cryptanalysis of a reduced version of the block cipher E2. Fast
Software Encryption’99, Vol. LNCS 1636, , 1999.

[12] M. Matsui, “New Block Encryption Algorithm MISTY”, Fast Software En-
cryption, 4th International Workshop Proceeding, LNCS 1267, Springer-
Verlag, 1997, pp.54-68.

[13] H. Muratani, K. Ohkuma, F. Sano, M. Motoyama, and S. Kawamura.
Proposition of a 64-bit version of Hierocrypt. Technical Report of
IPSJ(Japan) CSEC11-8, Vol. 11, No. 8, 2000.

[14] K. Ohkuma, H. Muratani, F. Sano, M. Motoyama, and S. Kawamura. A
revised nested SPN cipher. Technical Report of IPSJ(Japan) CSEC11-7,
Vol. 11, No. 7, 2000.

23

