

Simulated bifurcation machines:

combinatorial optimization accelerators based on a quantum-inspired parallelizable algorithm

Kosuke Tatsumura

Toshiba Corporation

Outline

- Introduction
- Simulated bifurcation (SB)
- Implementation & Performance
- Application
- Conclusion

Combinatorial optimization

Economically important but computationally hard

Nondeterministic polynomial time (NP)-hard

Ising machine

Special-purpose computer for combinatorial optimization

Ising problem

Combinatorial optimization

*1 https://www.dwavesys.com/d-wave-two-system *2 https://www.hitachi.co.jp/New/cnews/month/2019/02/0219.html *3 https://www.fujitsu.com/global/about/resources/ news/press-releases/2018/0515-01.html *4 https://www.ntt.co.jp/news2017/1711e/171120a.html *5 D. Pierangeli, et al., Phys. Rev. Lett. **122**, 213902 (2019). *6 F. Cai, et al., Nature Electronics **3**, 409 (2020).

Slide 3

Simulated bifurcation machine (SBM)

Algorithm

Quantum-inspired

Quantum bifurcation machine in a quantum principle

Discovery

Simulated bifurcation algorithm in a new classical principle

Highly parallelizable

Implementation

High performance single-chip

Tactile textiles from functional fibres

Application

Very practical

cloud

Innovative ex.real-time systems

Outline

Introduction

- Simulated bifurcation (SB)
- Implementation & Performance
- Application
- Conclusion

Quantum-inspired algorithm

Quantum Bifurcation (QB) machine Combinatorial optimization [H. Goto et al., Sci. Rep., (2016)] based on quantum adiabatic theorem Hamiltonian describing adiabatic bifurcation process in a nonlinear oscillator network solution $H_q(t) = \hbar \sum_{i=1}^{N} \left| \frac{K}{2} a_i^{\dagger 2} \right|$ quantum interference quantum superposition Classical Bifurcation (CB) machine guantum bifurcation classicization of state variables $H_{c}(\mathbf{x},\mathbf{y},t) = \sum_{i=1}^{N} \left[\frac{K}{4} \left(x_{i}^{2} + y_{i}^{2} \right)^{2} - \frac{p(t)}{2} \left(x_{i}^{2} - y_{i}^{2} \right) + \frac{\Delta_{i}}{2} \left(x_{i}^{2} + y_{i}^{2} \right) \right] - \frac{\xi_{0}}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} J_{i,j} \left(x_{i}x_{j} + y_{i}y_{j} \right)$ algorithmic twist for speed-up Simulated Bifurcation (SB) algorithm (2019) [H. Goto et al., Sci. Adv., (2019)]

Classicizing QB that works in a quantum principle...? Why SB works? What principle? There was a discovery

Simulated bifurcation: Why it works

New classical principle: adiabatic and ergodic search

Dynamical change of energy landscape

> a single local minimum

bifurcation (adiabatic process)

multiple local minima (target cost function)

> best solution (-1,-1)

Energy landscape ($N_{spin}=2$)

Simulated bifurcation: How it works

"N-body"-type algorithmic structure \rightarrow highly parallelizable

Characteristics

	SA simulated annealing	SB simulated bifurcation		R-NN recurrent neural network	N-body gravitational (/Coulomb)-force					
Structure	Sequential updating () (Parallel updating	position momentum s_1 s_2 s_3 s_2 s_N	neuron neuron V_{j} V_{j} V_{2} V_{2} $W_{i,j}$ $W_{i,j}$ full connection	position momentum (1) (2)					
Parallelism	O(<i>N</i>)	O(N ²)								
More parallelizable Intensive memory access J/W matrix (NxN matrix) Very similar More PEs per chip PE: pairwise interaction SB can be accelerated by FPGAs/GPUs (not limited to special ASICs) Many AI chips (AI ASSPs) are beneficial also to SB										

Outline

- Introduction
- Simulated bifurcation (SB)
- Implementation & Performance
- Application
- Conclusion

FPGA-based accelerator for simulated bifurcation

Large-scale, massively parallel, and high utilization

Problem	complete-graph MAX-CUT		
Machine size	<mark>4,096</mark> spins (on Arria10 FPGA)		
Architecture			
Pr/Pc/Pb	32/32/8		
# of MAC PEs	8,192		
Effective activity	92 %		
Resource			
ALM	40%		
BRAM	56%		
DSP	7%		
System Clock	[MHz]		
Fsys	269		
Fsys	269		

2023 Symposium on VLSI Technology and Circuits

Slide 11

Performance (2019)

2023 Symposium on VLSI Technology and Circuits

[H. Goto et al., Sci. Adv., (2019)]

dvances

Performance (2021)

SB is very competitive with state-of-the-art Ising machines

2nd-gen algorithm Quasi-quantum tunneling

0.5 0.4

0.3

0.2

0.1 0

-0.1

-0.2

V_{dSB}

0.5

-0.5

×~

 V_{dSB}

 H_{dSB}

odivity	,	Machina	TTT		
o-all {	±1} \$	bSBM STATICA CIM	0.26 ms 1.50 ms 1.1 s		•
arse {0 %)), -1}	DSBM CIM	0.11 ms 14 ms		
				10 ⁻⁶	10-3 TTT (s)
ectivity	J _{ij}	Machine	TTS		
o-all {:	±1}	dSBM RBM CIM QA	9.2 μs 10 μs 0.6 ms 1.4 s		_
o-all {:	±1}	dSBM RBM SimCIM CIM	29 μs 30 μs 0.6 ms 3.0 ms		_
arse {0 ree 3) {0), -1}	dSBM QA CIM	0.70 ms 11 ms 51 ms		_
o-all {	±1}	dSBM SimCIM DA	25 ms 0.14 s 0.27 s		
o-all {	±1}	dSBM DA	55 ms 1 s		
to-all 16 {2 ¹⁵ + 1	6 bits I,, 2 ¹⁵ – 1	dSBM } DA	0.29 s 0.9 s		
o-all {	±1}	dSBM	1.3 s		
arse {0 %)), -1}	dSBM SimCIM	2.7 s 12 s		
9	Fime	متر (۱٫-۱) (۱٫-۱) (۱٫-۱)	rse {0, -1} dsm SimCIM	rse {0,-1} dSBM 2.7 s SimCIM 12 s Fime-To-Solution)	rse {0, -1} dSBM 2.7 s SimCIM 12 s Time-To-Solution)

[H. Goto *et al.*, *Sci. Adv.*, (2021)]

Competitors SB: Simulated bifurcation **QA:** Quantum annealer

CIM: Coherent Ising machine **DA:** Digital annealer SimCIM: Simulated CIM **RBM:** Restricted Boltzmann machine MA: Momentum annealing

Scalability (2021)

[K. Tatsumura *et al.*, *Nat. Ele.*, (2021)]

nature electronics

Scalability (2021)

Multi-chip architecture based on partitioned SB

Bidirectional ring-network cluster without any centralized features

Autonomous synchronization mechanism (No clock-sharing, No central-HUB)

[K. Tatsumura *et al.*, *Nat. Ele.*, (2021)]

Time

[K. Tatsumura *et al.*, *Nat. Ele.*, (2021)]

Scalability (2021)

upper limit determined by the communication tech.

Constant-efficiency scaling at the maximized computation parallelism (at the strong scaling limit)

Outline

- Introduction
- Simulated bifurcation (SB)
- Implementation & Performance
- Application
- Conclusion

Toshiba's website "SQBM+TM"

Application of SBMs https://www.global.toshiba/ww/products-solutions/ai-iot/sbm.html

Enabling NP-hard optimization in real-time systems

Must respond within critically defined time constraints →Enabling *rational* judgment based on combinatorial optimization

2023 Symposium on VLSI Technology and Circuits

Slide 19

[K. Tatsumura *et al.*, *IEEE ISCAS.*, (2020)]

Trading system for cross-currency arbitrage

Optimal path search in a directed graph (a typical combinatorial problem)

Arbitrage Problem

find a closed path that maximizes the profit Cost function $Profit = \prod_{i,j \in path} r_{i,j}$

Constraint

Must be a closed path

Ising (QUBO) formulation

$$C_{tot} = m_{c}C + m_{p}P$$

$$C' = \prod r_{i,j} b_{i,j} \longrightarrow C = \sum w_{i,j} b_{i,j}$$

$$P = \sum_{i} \sum_{j \neq j'} b_{i,j} b_{i,j'} + \sum_{j} \sum_{i \neq i'} b_{i,j} b_{i',j} + \sum_{i} \left(\sum_{j} b_{i,j} - \sum_{j} b_{j,i}\right)^{2} + \sum_{i,j} b_{i,j} b_{j,i}$$

Trading system for cross-currency arbitrage

An end-to-end FPGA-based arbitrage system

\Box ①Custom I/F (feed handler)

captures market feeds at unscheduled intervals

②Exchange rate manager

updates an NxN *wij* matrix, outputs all weights in a single clock

③SB accelerator

searches for an optimal path from all possible paths

(4) Trading engine

prepares order packets

- 5 Custom I/F (line handler)

issues the order packets

Trading system for cross-currency arbitrage

<30 µs system-wide latency & 91% Top-1 probability

2023 Symposium on VLSI Technology and Circuits

Slide 22

Conclusion

Simulated bifurcation (SB):

quantum-inspired, highly-parallelizable algorithm for combinatorial optimization

Simulated bifurcation machines (SBM, HW implementation):

efficiently implemented with FPGAs/GPUs, very practical (no refrigerator, no laser) high performance, very competitive with state-of-the-art Ising machines embeddable, customizable (FPGA), scalable (FPGA cluster, GPU cluster) prefer memory-rich architectures, affinity to Al chips

Innovative applications:

Edge(FPGA): real-time systems that make a rational judgment based on combinatorial optimization Cloud(GPU):

enabling large/complex combinatorial optimization that was previously impossible

Toshiba's website "SQBM+TM" <u>https://www.global.toshiba/ww/products-solutions/ai-iot/sbm.html</u>

[1] Hayato Goto, Kosuke Tatsumura, Alexander R. Dixon, "Combinatorial optimization by simulating adiabatic bifurcations in nonlinear Hamiltonian systems," Science Advances 5, eaav2372, 2019. https://doi.org/10.1126/sciadv.aav2372

[2] Hayato Goto, Kotaro Endo, Masaru Suzuki, Yoshisato Sakai, Taro Kanao, Yohei Hamakawa, Ryo Hidaka, Masaya Yamasaki, Kosuke Tatsumura, "High-performance combinatorial optimization based on classical mechanics," Science Advances 7, eabe7953, 2021. https://doi.org/10.1126/sciadv.abe7953

[3] Kosuke Tatsumura, Masaya Yamasaki, Hayato Goto, "Scaling out Ising machines using a multi-chip architecture for simulated bifurcation," Nature Electronics 4, pp. 208-217, 2021. https://doi.org/10.1038/s41928-021-00546-4

[4] Hayato Goto, "Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network," Scientific Reports 6, 21686, 2016. <u>https://doi.org/10.1038/srep21686</u>

[5] Hayato Goto, "Quantum Computation Based on Quantum Adiabatic Bifurcations of Kerr-Nonlinear Parametric Oscillators," Journal of the Physical Society of Japan **88**, 061015, 2019. <u>https://doi.org/10.7566/JPSJ.88.061015</u>

[6] Hayato Goto, Taro Kanao, "Chaos in coupled Kerr-nonlinear parametric oscillators," Physical Review Research **3**, 043196, 2021. <u>https://doi.org/10.1103/physrevresearch.3.043196</u>

[7] Taro Kanao, Hayato Goto, "Simulated bifurcation assisted by thermal fluctuation," Communications Physics 5, 153, 2022. https://www.nature.com/articles/s42005-022-00929-9

[8] Taro Kanao, Hayato Goto, "Simulated bifurcation for higher-order cost functions," Applied Physics Express 16, 014501, 2023. https://doi.org/10.35848/1882-0786/acaba9

[9] Kosuke Tatsumura, Alexander R. Dixon, Hayato Goto, "FPGA-Based Simulated Bifurcation Machine," Proc. of IEEE International Conference on Field Programmable Logic and Applications (FPL), pp. 59-66, 2019. https://doi.org/10.1109/FPL.2019.00019

[10] Kosuke Tatsumura, "Large-scale combinatorial optimization in real-time systems by FPGA-based accelerators for simulated bifurcation," Int'l Symp. on Highly Efficient Accelerators and Reconfigurable Technologies (HEART), 2021. https://doi.org/10.1145/3468044.3468045

[11] Kosuke Tatsumura, Ryo Hidaka, Masaya Yamasaki, Yoshisato Sakai, Hayato Goto, "A Currency Arbitrage Machine based on the Simulated Bifurcation Algorithm for Ultrafast Detection of Optimal Opportunity," Proc. of IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1-5, 2020. <u>https://doi.org/10.1109/ISCAS45731.2020.9181114</u>

[12] Nasa Matsumoto, Yohei Hamakawa, Kosuke Tatsumura, Kazue Kudo, "Distance-based clustering using QUBO formulations," Scientific Reports **12**, 2669, 2022. <u>https://doi.org/10.1038/s41598-022-06559-z</u>

[13] Kyle Steinhauer, Takahisa Fukadai, Sho Yoshida, "Solving the Optimal Trading Trajectory Problem Using Simulated Bifurcation," arXiv preprint arXiv:2009.08412, 2020. <u>https://doi.org/10.48550/arXiv.2009.08412</u>

[14] Tingting Zhang, Qichao Tao, Jie Han, "Solving Traveling Salesman Problems Using Ising Models with Simulated Bifurcation," Proc. of International SoC Design Conference (ISOCC), pp.288-289, 2021. https://doi.org/10.1109/ISOCC53507.2021.9613918

[15] W. Zhang, Y.-L. Zheng, "Simulated Bifurcation Algorithm for MIMO Detection," arXiv:2210.14660, 2022. <u>https://arxiv.org/abs/2210.14660</u>

[16] G. Finocchio, K. Tatsumura, Hayato Goto et al. "Roadmap for Unconventional Computing with Nanotechnology," arXiv: 2301.06727, 2023. https://doi.org/10.48550/arXiv.2301.06727

[17] Naeimeh Mohseni, Peter L. McMahon, Tim Byrnes, "Ising machines as hardware solvers of combinatorial optimization problems," Nature Reviews Physics, 2022. https://doi.org/10.1038/s42254-022-00440-8

[18] Hiroki Oshiyama, Masayuki Ohzeki, "Benchmark of quantum-inspired heuristic solvers for quadratic unconstrained binary optimization," Scientific Reports **12**, 2146, 2022. <u>https://doi.org/10.1038/s41598-</u> 022-06070-5