
User's Manual for SQBM+™ AWS AMI v2.0.1

Note
1. Any reproduction of this document, in whole or in part, without prior written consent is prohibited.
2. The information contained herein is subject to change without notice.
3. While effort has been made to verify the information, this document may contain ambiguities, errors, or problems.
4. We shall not be responsible for any damages arising out of the use of, or otherwise related to, this document or any other materials,

notwithstanding the provisions of Section 3. We appreciate your feedback if any is found.
5. Company names or product names mentioned herein may be trademarks of their respective companies.
6. Amazon Web Services, the "Powered by AWS" logo, AWS Marketplace and the AWS Marketplace logo are trademarks of Amazon.com, Inc. or its

affiliates in the United States and/or other countries.
7. This service is subject to the Foreign Exchange and Foreign Trade Control Act and all United States export laws and regulations. Its use by

unauthorized individuals or entities and/or in unauthorized regions is prohibited. Users must comply with the Foreign Exchange and Foreign Trade
Control Act and all United States export laws and regulations.

8. ”SQBM+” is a registered trademark or trademark of Toshiba Digital Solutions Corporation in Japan and other countries.

Table of Contents
User's Manual for SQBM+™ AWS AMI v2.0.1

Note
Table of Contents
Introduction
Overview of SQBM+
SQBM+ computation API

Computation structure of the SQBM+ computation API
Specifications common to all solvers

Request specifications
HTTP request
Request parameters
Problem data specification

Settings in the request body
Problem file path specification in URI

Response specifications
Response status common to all solvers
Response header common to all solvers
Response body common to all solvers
Error messages

qubo solver API
Request specifications of the qubo solver API

HTTP request
Request header
Request parameters
Problem data specification

MatrixMarket format
qubo solver API-compatible HDF5 format

Restrictions on input problem data
Response specifications of the qubo solver API

Response status
Response header
Response body

Example of using the qubo solver API
Example of setting parameters

Example of setting steps and loops
Example of setting C and dt
Example of repeating computation
Example of outputting multiple solutions

http://amazon.com/

Example of using an HDF5 file as input data
qplib solver API

Definition of a problem (linear-constrained quadratic binary programming problem)
Request specifications of the qplib solver API

HTTP request
Request header
Request parameters
Problem data specification

HDF5 format
qplib format

Restrictions on input problem data
Response specifications of the qplib solver API

Response status
Response header
Response body

Example of using the qplib solver API
Sample problem description (knapsack problem)
Sample qplib format file

Example of setting parameters
pubo solver API

Definition of the problem (a problem with higher order terms up to order 4)
Request specifications of the pubo solver API

HTTP requests
Request header
Request parameters
Problem data specification
Restrictions on input problem data

Response specifications of the pubo solver API
Response status
Response header
Response body

Examples of using the pubo solver API
Sample problem description (MAX-3SAT problem)
Sample qplib format file

How to use the computation API as a sampler
Health check API

Request specifications
HTTP request
Request header
Request parameters

Response specifications
Response status
Response header
Response body

Example of using the Health check API
Version check API

Request specifications
HTTP request
Request header
Request parameters

Response specifications
Response body

Example of using the Version API
System configuration parameters
Maintenance and security

Log files
Log rotation

Conditions for Log Rotation
Log rotation behavior

Troubleshooting
Actions when the SQBM+ stops

Actions when the SQBM+ does not response
Disclaimer

Introduction
SQBM+ (Simulated Quantum-inspired Bifurcation Machine plus) is a set of solvers enabling users to quickly obtain nearly optimal solutions for large
combinatorial optimization problems. SQBM+'s solver allows users to obtain optimal or good solutions. SQBM+ is developed based on the theory
described in the following papers:

Goto, H., Tatsumura, K., & Dixon, A. R. (2019) Combinatorial optimization by simulating adiabatic bifurcations in nonlinear Hamiltonian systems,
Science Advances, 5(4), DOI:10.1126/sciadv.aav2372
Goto, H., Endo, K., Suzuki, M., Sakai, Y., Kanao T., Hamakawa Y., Hidaka, R., Yamasaki, M., & Tatsumura, K. (2021) High-performance
combinatorial optimization based on classical mechanics, Science Advances, 7(6), DOI:10.1126/sciadv.abe7953

SQBM+ is provided as an Amazon Machine Image (AMI) for use on Amazon Elastic Compute Cloud (Amazon EC2). SQBM+ is configured as shown in
Figure 1.

Figure 1 Functional block diagram of SQBM+

SQBM+ has the following main characteristics:

Offers SQBM+ computation API using RESTful API.
Provided with solvers and interfaces compatible with various optimization problems and data formats. Currently, the following solvers are available.
For details, see the respective sections of each solver.

qubo solver API: a solver corresponding to the qubo model
qplib solver API: a solver that solves a linear constrained quadratic programming problem.
pubo solver API: a solver that solves a problem with higher order terms up to order 4.

Quickly obtains optimal or nearly optimal solutions for large optimization problems[1].
Easy to use. Complicated parameter setting is not required.

This document is organized as follows:

Overview of SQBM+
SQBM+ computation API
Health check API
Version check API
System configuration parameters

First, the Chapter "Overview of SQBM+" presents an overview of APIs provided by SQBM+, where users can gain an overview of how to use APIs
provided by SQBM+ and their responses. This Chapter is followed by descriptions of a total of three APIs, consisting of the SQBM+ computation API,
the health check API, and the version check API. By reading chapters describing each of the three APIs after reading the overview, users can learn how

to use them in detail.
The last Chapter "System configuration parameters" describes system settings for SQBM+. Users can use SQBM+ without any system settings.
However, in some cases, default settings need to be modified to handle much larger problems or to modify the computation time limit. If so, read this
Chapter and determine whether the default settings need modification.

Overview of SQBM+
SQBM+ provides the following three APIs:

SQBM+ computation API: API which finds a solution to a combinatorial optimization problem.
Health check API: API for checking the operation of the SQBM+ computation API.
Version check API: API for checking the SQBM+ version you are using.

Each of these three APIs can be used by sending an HTTP request to the SQBM+ server from the client.
A response from each API is returned as an HTTP response.
Figure 2 is an example of using the SQBM+ computation API where the client using the API sends an HTTP request to the SQBM+ server by running
the curl command. In this example, the client sends an HTTP request specifying that the qubo solver API be used to solve an optimization problem. The
SQBM+ server receiving this HTTP request performs computation and returns a solution found to the client. The response is in JSON format.

Figure 2 Example of using the SQBM+ computation API

Table 1 summarizes APIs provided by SQBM+.
For details of each API, refer to Sections SQBM+ computation API, Health check API, and Version check API.

Table 1 SQBM+ API information

API type HTTP method URL path Port Character code

SQBM+ computation API POST
http://{IP address of the server}:{port number}/solver/{solver}
{solver}: Select one of qubo, qplib, pubo as a solver to use.
{port number}: The default is 8000.

8000 (default) UTF-8

health check API GET
http://{IP address of the server}:{port number}/healthcheck
{port number}: The default is 8000.

8000 (default) UTF-8

version check API GET
http://{IP address of the server}:{port number}/version
{port number}: The default is 8000.

8000 (default) UTF-8

Each SQBM+ API has the following characteristics:

SQBM+ has no session information.
SQBM+ does not retain data included in a request as well as response data sent to the user. Note that you cannot ask for the result of past
requests and that no data is retained.
Each SQBM+ API and function can be used by sending a corresponding HTTP request. See the URL path in Table 1 to access each API and
function.

Before using the SQBM+ computation API, select the solver that suits the problem you want to solve.
In SQBM+ computation API, you can set parameters related to computation control as a query string in an HTTP request.
Set problem data to be solved by the SQBM+ computation API as an HTTP request body.
SQBM+ computation API defines specifications common to all solvers as in Figure 3, in addition to solver-specific specifications. Specifications
regarding responses and available parameters are categorized into two; those that are common to all solvers and those specific to each solver. Also,
the format of problem data that can be set as a request body is determined by each solver. The user needs to read Specifications common to all solvers
and understand the specifications of each solver.

Figure 3 Specification hierarchy of the SQBM+ computation API

SQBM+ computation API
As one of its main APIs, SQBM+ provides a solver to solve a combinatorial optimization problem. User need to check each section of each solver which
suits the problem you want to solve. Each solver accepts problem data in various formats. The user does not need to specify the data format in an
HTTP request, because each solver can automatically identify the format of problem data. For input formats of each solver, each solver section will be
helpful.

The following information is required for SQBM+ to solve a problem:

solver to be used and problem data (required)
parameter specification that controls how SQBM+ solves a problem (optional)

The user needs to review the Section Specifications common to all solvers to understand the specifications of HTTP requests and responses common
to all solvers first; then, he/she can better understand the specifications and response details specific to each solver by reviewing the respective
sections on specifications of each solver.
If there is no parameter specification that controls how SQBM+ solves a problem, then either the setting value of system configuration parameters is
applied, or problem-solving is automatically adjusted within SQBM+. For these reasons, parameter specification is not required. The SQBM+
computation API provides a list of parameters used to solve a problem in the response. This allows users to reference parameter information.
Parameters related to computational sequence control play a major role in controlling the SQBM+ computation API. These parameters determine an
outline of how the SQBM+ computation API finds a solution. The Section Computation structure of the SQBM+ computation API describes these
parameters.

Computation structure of the SQBM+ computation API
SQBM+ computation API is capable of controlling computational sequences in two different ways; one is to control the number of solutions to a problem
that is solved, the other is to control the number of times the SB algorithm to be performed is processed.

The SQBM+ computation API is capable of specifying the number of solutions to a problem that is iteratively solved.
It is specified through the 'loops' parameter to be described later. The number of solutions the SQBM+ computation API finds is determined by the
number of GPU devices in your environment and the number of multi-processors within GPUs. The API iteratively searches for optimal solutions
until at least as many solutions as 'loops' 'the number of GPU devices' 'the number of multi-processors' are obtained.
The default behavior is that the SQBM+ computation API returns the best of these solutions to the user, but it is also possible to return the specified
number of solutions in descending order of evaluation values. For details, see the respective sections on System configuration parameters and
Request parameters.
The SQBM+ computation API is also capable of specifying the number of times the SB algorithm to be iteratively performed is processed.
It is specified through the 'steps' parameter to be described later. The greater the number of 'steps', the longer the time spent on searching for one
optimal solution.

The number of 'steps' and 'loops' affects the accuracy of solutions to search for and computation time. The SQBM+ computation API has an auto setup
functionality that helps you find better parameter settings. For details, see Request parameters.
The total number of solutions that the SQBM+ computation API has found is expressed as the parameter 'runs'. Each solution is counted as one run,
which is returned as a response from the SQBM+ computation API. For details, see Response specifications. Figure 4 shows the computation structure
of the SQBM+ computation API.

Figure 4 Computation structure of the SQBM+ computation API

Specifications common to all solvers
A request to the SQBM+ computation API is made using a RESTful API.
The HTTP method used as an RESTful API, URL configuration, and parameters common to all solvers are described in Request specifications right
below.

× ×

Request specifications

HTTP request

HTTP method to use: POST
URL configuration: http://{ip}:{port}/solver/{solver}?{parameter}

ip: IP address of the machine on which the SQBM+ computation API is operating.
port: port number of the SQBM+ server
solver: qubo, qplib or pubo
parameter: query string consisting of key-value pairs, where an equal sign (=) is used to connect each key and its value. For available
parameter types and details, see Request parameters and specifications specific to each solver. Default values are used if parameter values
are not set.

Request parameters

Table 2 Parameters common to all solvers

Name Default Description

steps 0

Specify 'steps' described in Computation structure of the SQBM+ computation API. The value 0 (zero)
means auto step specification, where the SQBM+ computation API performs computation by automatically
changing the number of 'steps' each time the API finds a solution.
Specify an integer between 0 and 100,000,000.

loops 0
Specify 'loops' described in Computation structure of the SQBM+ computation API. If 0 (zero) is specified,
'loops' is set to 100,000,000.
Specify an integer between 0 and 100,000,000.

timeout

10 seconds
The default value
can be modified using
the system configuration
file.

Specify the maximum computation time (timeout) in seconds.

maxwait

60 seconds
The default value
can be modified using
the system configuration
file.

Specify the maximum waiting time in seconds for each computation request. A computation request
accepted by the API server waits in a queue for the preceding requests being processed to be completed.
If the specified maximum waiting time elapses during this wait, the computation request ends with a
timeout error.
Specify a value greater than 0 and less than or equal to 100,000.

target unspecified
If the parameter 'target' is specified, computation will stop when the evaluation value of an objective
function reaches 'target'. If 0 (zero) is specified for the parameter 'loops', solving will be repeated either
until the objective function reaches the value specified in the parameter 'target' or until a timeout occurs.

maxout 1

Specify the upper limit of the number of solutions to be outputted. Until the limit specified by 'maxout' is
reached, the SQBM+ computation API outputs the obtained solutions in descending order of the value of
the objective function.
Specify an integer equal to or greater than one.

Problem data specification

Create combinatorial optimization problem data in a data format supported by each solver.
However, the specified data is rounded to a decimal within the range represented by 32bit or 64bit.
Combinatorial optimization problem data can be set in the following two ways.

Setting in request body
Specify problem file path in URI

Settings in the request body

Set the problem data if you pass the problem data in the request body.

Problem file path specification in URI

You can place the combinatorial optimization problem data file in a location accessible by the SQBM+ server, set the file path as an HTTP header, and
read the problem data into SQBM+.
Please set the header information of Table 3 as the header.
Set X-Input-Data-URI when specifying the file path.
Set Content-Location when downloading from an HTTPS server (S3, etc.).

Table 3 Request headers to be set

Header field Description

X-Input-Data-URI absolute file path

Content-Location URL of the file located on the HTTPS server

Response specifications

Response status common to all solvers

If computation completes successfully, an HTTP status code 200 is returned.
If it abends, an HTTP status code other than 200 is returned.
For details, see Table 6.

Response header common to all solvers

When computation completes successfully, the header in Table 4 is specified.

Table 4 Response header fields and values to be set

Header field Description

Content-Type application/json

X-Calculation-Time Actual computation time. Same as 'time' in the response body.

X-ID Internally assigned request ID.

When there is a calculation error, "text/html; charset=utf-8" is set as the Content-Type value, and there is no X-Calculation-Time header or X-ID header.

Response body common to all solvers

Table 5 gives a list of properties that are stored in the response body when computation completes successfully. The results are returned in JSON
format. The properties in Table 5 are the properties that all solver have in common.

Table 5 Properties of computation results common to all solvers

Property
name

Description

id Internally assigned request ID.

time Actual computation time in seconds, not including overheads, such as data transfer time (in seconds).

wait Processing latency from the time when the SQBM+ server loads a problem until the SQBM+ computation is started (in seconds).

message

Messages about completion conditions of the SQBM+ computation API. One of the five message strings (finished, timeout,
reached, max results, and saturated) is set. Their specifications are as follows:
- "finished": Completed the computation of the specified number of steps and loops.
- "timeout": Stopped the computation because the computation time has reached its timeout.
- "reached": Stopped the computation because the evaluation value has reached the value specified in the parameter 'target'.
- "max results": Obtained the maximum number of solutions required in one request.
- "saturated": With no hope of getting a better solution, the calculation converged.

runs Number of solutions found.

value Evaluation value computed on the basis of solutions represented by the 'result' in this table.

result Best solution found.

param
values of parameter settings used when the best solution is obtained. JSON format.
Parameters displayed vary depending on which solver and algorithm to use.

count the number of times the best solution is obtained.

others

A list consisting of a set of each evaluation value for other solutions, a vector of variables, 'param', and the number of times that
particular solution is obtained.
The total number of solutions included here is equal to or less than 'request parameters maxout minus 1'. Refer to Example of
outputting multiple solutions to see examples.

Note that the input data to the SQBM+ computation API and the output data from the SQBM+ computation API are not stored in SQBM+.

Error messages

If an anomaly occurs in the SQBM+ computation API, an HTTP response status code other than 200 is returned. An HTTP response body contains a
message showing the cause of an error. Table 6 lists error messages.

Table 6 List of error messages

Status
code

Message Description

400
error message regarding input
parameter, input problem data

The input parameter, input problem data is incorrect. The message contains detailed
information.

400 no result
Unable to find a solution. It is possible that 'timeout' is too short, or linear constraint conditions
are too strict.

403 The evaluation period has passed. The trial period has expired. Occurs only in evaluation version.

403
solver is unavailable because it has
not been completed usage metering

This message will be returned when SQBM+ have not finished metering for usage. Occurs only
in marketplace edition. It may take a few minutes to finish it. Please try again in a few minutes.

403
solver is unavailable due to a fail
connection to the Marketplace

This message will be returned when SQBM+ fail to connect to Marketplace. Occurs only in
marketplace edition. Please check your network configuration. The AWS Marketplace buyer
guide can help.

403
solver is unavailable due to the
access denied to the Marketplace

This message will be returned when SQBM+ don't have authority to access Marketplace.
Occurs only in marketplace edition. Please attach the IAM role with
AWSMarketplaceMeteringFullAccess policy to EC2 instance.

403
solver is unavailable because
usage metering failed for more than
2 hours

This message will be returned when SQBM+ have failed to meter usage for more than 2 hours.
Occurs only in marketplace edition. Please check your network configuration and IAM role. If
you can't resolve problem, then reboot EC2 instance.

404 message about URL anomaly The requested URL is invalid.

413 payload too large
The size of a problem file has exceeded payload_limit. For details, see System configuration
parameters.

413 content too large
The size of a problem file has exceeded payload_limit. For details, see System configuration
parameters.

500
error message about the server's
internal processing. The specific
messages vary case by case

The occurrence of this error means that an error unexpected by the SQBM+ server has
occurred. Contact the server administrator.

503 busy The number of requests that can be accepted at the same time.

503 engine stopped
The engine has stopped. In this case, SQBM+ automatically attempts a restart. For details
about this error, see sbm-engine.log in the server where the SQBM+ computation API is
operating. For details, see Log files.

504 timeout The wait time specified by maxwait has elapsed, SQBM+ computation for a request has ended.

qubo solver API
The qubo solver API solves a combinatorial optimization problem represented by the qubo model.

Request specifications of the qubo solver API

HTTP request

In http://{ip}:{port}/solver/{solver}?{parameter}, select qubo for {solver}.

Request header

Table 7 Request header field and a value that need to be set

Header field Description

Content-Type application/octet-stream

Request parameters

In addition to the parameters common to all solvers (Table 2), solver-specific parameters listed in Table 8 can be used in the qubo solver API.

Table 8 Solver-specific parameters

Parameter Default Description

dt 0

Specify the time step size used in the time evolution of the SB algorithm. 0 (zero) denotes the auto-adjustment
specification of the time step size, in which the SQBM+ computation API performs computation by automatically and
internally changing dt.
Specify a value between 0.0 and 1.5.

C 0
Corresponds to used in a paper by Goto, Tatsumura, & Dixon (2019), which proposes a theory on which SQBM+ is
based. If 0 (zero) is specified, the value of C will be auto-adjusted.
Specify a single-precision floating point number equal to or greater than 0 (zero).

algo 0

Specify an algorithm that is implemented within SQBM+ including the SQBM+ computation algorithms proposed in a
paper by Goto et al. (2021), such as 15 (bSB) and 20 (dSB). And you can also use algorithm 25 and 30. For algorithms
that can be specified, see Table 9. Computation results may vary depending on which algorithm is used. If 0 (zero) is
specified, SQBM+ searches for a solution using various algorithms.

algos -

Multiple computation algorithms can be specified by using regular expressions. If this parameter is specified, multiple
algorithms specified by 'algos' will be used instead of by 'algo'.
Algorithms can be specified as shown in the example below. Note that not all regular expressions can be used.
Specifically,
 http://localhost:8000/solver/qplib?timeout=1&algos=1.

needs to be encoded as
 http://localhost:8000/solver/qplib?timeout=1&algos=1%2e .

blocks 0
Specify the number of blocks of GPUs used to find a solution. If 0 (zero) is specified, the value of 'blocks' will be auto-
adjusted.
Specify an integer between 0 and 40.

multishot 0

When you specify multishot, SQBM+ will get multiple solutions, which start from different initail decision variable values
but other parameters are the same. The number of solution is multishot number. Default value is 0, which automatically
decide multishot from problem size. If multishot > 1, SQBM+ will have less overhead.
Specify an integer between 0 and 10.

Table 9 Available algorithms

Algorithm Description

15 bSB, the SQBM+ computation algorithm proposed in a paper by Goto et al. (2021).

151
In addition to the processing of algo=15, C is automatically adjusted for each SB algorithm updates step. This may improve accuracy
over specifying a fixed C.

154 In addition to processing of algo=15, the impact size of the QUBO coefficient matrix on the SB algorithm is autoscaled. Precision may

ξ 0

Algorithm Description

improve when the distribution of eigenvalues of the QUBO coefficient matrix is not even.

155 Both 151 and 154 are performed.

20 dSB, the SQBM+ computation algorithm proposed in a paper by Goto et al. (2021).

201
In addition to the processing of algo=20, C is automatically adjusted for each SB algorithm updates step. This may improve accuracy
over specifying a fixed C.

204
In addition to the processing of algo=20, the impact size of the QUBO coefficient matrix on the SB algorithm is autoscaled. Precision
may improve when the distribution of eigenvalues of the QUBO coefficient matrix is not even.

205 Both 201 and 204 are performed.

25 Extension of 15. This algorithm more likely escape from local minimum.

251 Extension of 151. This algorithm more likely escape from local minimum.

254 Extension of 154. This algorithm more likely escape from local minimum.

255 Extension of 155. This algorithm more likely escape from local minimum.

30 Extension of 20. This algorithm more likely escape from local minimum.

301 Extension of 201. This algorithm more likely escape from local minimum.

304 Extension of 204. This algorithm more likely escape from local minimum.

305 Extension of 205. This algorithm more likely escape from local minimum.

Problem data specification

In the problem data specification, a coefficient matrix corresponding to problem data needs to be represented in the QUBO format. The energy in a
given problem is calculated by using this QUBO matrix. The energy to be minimized is represented by the following formula:

where denotes the element of the matrix, and denotes a qubo variable. The formula above can be converted to the formula below:

which shows the linear term in the QUBO matrix separated from the diagonal elements of the matrix.
The qubo solver API supports two data formats: MatrixMarket and HDF5.
Each element of the QUBO matrix must have absolute value less than or equal to 1e+20.

MatrixMarket format

Problem data can be prepared using the MatrixMarket format. For details about the format, see https://math.nist.gov/MatrixMarket/formats.html.

SQBM+ supports only 'general' as 'symmetry'. However, the evaluation value returned by the qubo solver API, value, is computed using only the
elements of the lower triangular matrix, including the diagonal entries. The "symmetric" specification is supported for backward compatibility, but will
be deprecated in the future. Even if "symmetric" is specified, it will be processed in the same way as general.
For specifics on how to convert a real problem to the MatrixMarket format, see the example of the MAX-CUT problem described in Example of
using the qubo solver API.
If 'integer' is specified for the data type, but the actual data is 'real', the qubo solver API does not return an error but executes computation as real-
type data, prioritizing the actual data type over the specified data type.
When specifying elements of the matrix using indices, take care not to duplicate the same elements. If problem files contain duplicates, the
behavior of the qubo solver is undefined, and the system may return an error with the status code 400.

qubo solver API-compatible HDF5 format

Binary problem data in the HDF5 format[2]. Refer to https://www.hdfgroup.org/solutions/hdf5/ for details of the format.

SQBM+ checks the header of an input file and recognizes its format. For this reason, the user does not need to specify the format type.
The file structure of an HDF5 file to be accepted by SQBM+ should be one of the following two:

File structure for a sparse QUBO matrix

E = Q ⋅
i≥j

∑ ij x ⋅i x j

Q ij x ∈i {0, 1}

E = Q ⋅
i>j

∑ ij x ⋅i x +j Q ⋅
i

∑ ii x i

https://math.nist.gov/MatrixMarket/formats.html
https://www.hdfgroup.org/solutions/hdf5/

The CSR format is used to represent a sparse matrix. For details, see
https://en.wikipedia.org/wiki/Sparse_matrix#Compressed_sparse_row_(CSR,_CRS_or_Yale_format). The referenced ROW_INDEX corresponds to
/qubo/indptr, COL_INDEX to /qubo/indices, and V to /qubo/data. The file structure is as shown below

+-Group("/qubo")

 +-DataSet("/qubo/data")

 | +-Attribute["format"]="csr"

 +-DataSet("/qubo/indptr")

 +-DataSet("/qubo/indices")

where /qubo/data, /qubo/indptr, and /qubo/indices are one-dimensional arrays.

File structure for a dense QUBO matrix

The file structure is as shown below:

+-Group("/qubo")

 +-DataSet("/qubo/data")

 +-Attribute["format"]="dense"

where /qubo/data is a two-dimensional array compatible with a qubo matrix.

Data type
To use a file structure for a sparse QUBO matrix, use the following

data types for the elements of each array:

data array: float32

indices array: uint32

indptr array: uint32

To use a file structure for a dense QUBO matrix, use the following data

types for the elements of each array:

data array: float32

Refer to the section Example of using an HDF5 file as input data for actual usage.

Restrictions on input problem data

The problem size that can be handled by the qubo solver API has the following limitations:

The number of qubo variables should be equal to or less than 10,000,000.
The number of nonzero elements in the QUBO matrix is

Must be less than or equal to 100,000,000 for MatrixMarket format.
HDF5 format (file structure corresponding to sparse QUBO matrix) must be 500,000,000 or less.
Must be 1,000,000,000 or less in HDF5 format (file structure corresponding to dense QUBO matrix).

HDF5 file size must be less than 2GB.

However, due to memory constraints, it may not be possible to obtain a solution even if the number is less than the limit. Recommended EC2 instance
types are as follows:

EC2 instance with GPU memory of P3 series or higher if less than 45000 variables and less than 300 million interaction terms
EC2 instances with more than 45000 variables or p3dn.24xlarge or more GPU memory for more than 300 million interaction terms

Response specifications of the qubo solver API

Response status

Same as the response status described in Response status common to all solvers.

Response header

Same as the response header described in Response header common to all solvers.

Response body

Same as the response body described in Response body common to all solvers, except for the properties in Table 10.

https://en.wikipedia.org/wiki/Sparse_matrix#Compressed_sparse_row_(CSR,_CRS_or_Yale_format)

Table 10 Response body specifications of the qubo solver

Property name Description

value Evaluation value calculated by the QUBO model.

result An array of qubo variables. If an array has five qubo variables, its 'result' would be [0,1,1,0,0] .

param Steps and qubo solver API specific parameters algo, dt, and C.

Example of using the qubo solver API

This section describes how to use the qubo solver API, taking the MAX-CUT problem as an example. The MAX-CUT problem is to find the cut which
maximizes the number of edges to be cut when the vertices of the graph are partitioned into two groups. In the weighted version of MAX-CUT, the
edges are weighted and the problem is to find the cut with maximum weight, where the sum of the weights of the edges to be cut is maximized. The
MAX-CUT problem in Figure 5 (with all weights equal to 1) has five optimal solutions.

Figure 5 MAX-CUT problem

The objective function for the MAX-CUT problem can be represented by the following Ising model:

where is a spin variable, whose value denotes which one of the two partitioned groups the vertex belongs to, and where is the
weight of the edge . If the neighboring vertices and , which are connected by the edge, belong to the same group, ; if they belong to
different groups, . This means that the greater the number of sets of vertices that belong to different groups and partition edges, that is, the
greater the number of vertices between two vertices that are partitioned, the more the energy will be minimized.
The inputs to the SQBM+ qubo solver API should have the QUBO format. Hence, the Ising model above must be converted to the QUBO format. Given
that variables in the QUBO format are , the spin variable can be expressed as . Substituting this into the formula for the
ISING model and rearranging the resulting formula, the following objective function in the QUBO format can be obtained:

From the formula above, a QUBO matrix which will be an input to the qubo solver API can be obtained. In the example in Figure 5, the QUBO matrix will
be the one like in Figure 6, where the coordinates of the linear term configure diagonal elements. Here weight is 1 if i and j are connected by an
edge.

Figure 6 QUBO matrix

Figure 7 shows an input file to the qubo solver API created from the QUBO matrix in Figure 6, where qubo.txt is a file name. Note that this file is created
in the MarketMatrix format.

minimize E = − W (1 −
2
1

i>j

∑ ij s s)i j

s ∈i {−1, 1} i W ij

ij i j s s =i j 1
s s =i j −1

E

x ∈i {0, 1} s =i 2x −i 1

minimize E = W (2x x −
i>j

∑ ij i j x −i x)j

W ij

$ cat qubo.txt

%%MatrixMarket matrix coordinate integer general

5 5 11

1 1 -2

2 1 2

2 2 -3

3 1 2

3 2 2

3 3 -3

4 2 2

4 4 -2

5 3 2

5 4 2

5 5 -2

Figure 7 Example of the MatrixMarket format

Using qubo.txt in Figure 7, let the qubo solver API solve the MAX-CUT problem[3]; the result would be like as bellow.

$ curl -i -H "Content-Type: application/octet-stream" -X POST "http://sqbmplus_server:8000/solver/qubo" --data-binary "@qubo.txt"

HTTP/1.1 200 OK
X-Calculation-Time: 10.047
X-ID: r2344244196
Content-Type: application/json; charset=utf-8
Content-Length: 182
ETag: W/"b6-2RQvWpIqZ6gO70gxv9xQqMT3ZQ8"
Date: Tue, 17 Jan 2023 09:17:48 GMT
Connection: keep-alive
Keep-Alive: timeout=5

{"id":"r2344244196","time":10.047,"wait":0,"message":"timeout","runs":517010,"value":-5,"result":[1,1,0,0,1],"param":
{"algo":20,"steps":2,"dt":0.7796917,"C":0.1791543},"count":97500}

Thus, the execution solution [1,1,0,0,1] is obtained. The sample results in Figure 5 show the results of optimizing the MAX-CUT problem in Figure 5.
Because there are multiple optimal solutions for this example problem, the results are not always the same.

Example of setting parameters

From now on, examples for how to set parameters to the qubo solver API are presented.

Example of setting steps and loops

curl -i -H "Content-Type: application/octet-stream" -X POST "http://sqbmplus_server:8000/solver/qubo?steps=1000&loops=10" --data-binary
"@qubo.txt"

HTTP/1.1 200 OK
X-Calculation-Time: 0.136
X-ID: r4641477837
Content-Type: application/json; charset=utf-8
Content-Length: 184
ETag: W/"b8-5IW9ZBtd9mXZhimG1zIj0xEQTDA"
Date: Tue, 17 Jan 2023 09:19:34 GMT
Connection: keep-alive
Keep-Alive: timeout=5

{"id":"r4641477837","time":0.136,"wait":0.001,"message":"finished","runs":800,"value":-5,"result":[1,1,0,0,1],"param":
{"algo":20,"steps":1000,"dt":0.7796917,"C":0.1791543},"count":191}

Example of setting C and dt

curl -i -H "Content-Type: application/octet-stream" -X POST "http://sqbmplus_server:8000/solver/qubo?steps=300&loops=1&C=0.29874&dt=0.1" --
data-binary "@qubo.txt"

HTTP/1.1 200 OK
X-Calculation-Time: 0.081
X-ID: r1183957498

Content-Type: application/json; charset=utf-8
Content-Length: 170
ETag: W/"aa-CraW/VGpZp4+y/lE7hI/Twt+gGc"
Date: Tue, 17 Jan 2023 09:21:42 GMT
Connection: keep-alive
Keep-Alive: timeout=5

{"id":"r1183957498","time":0.081,"wait":0,"message":"finished","runs":200,"value":-5,"result":[1,0,1,1,0],"param":
{"algo":20,"steps":300,"dt":0.1,"C":0.29874},"count":54}

Example of repeating computation

The computation continues until the evaluation value ('value') specified by 'target' is obtained or until the process times out.

curl -i -H "Content-Type: application/octet-stream" -X POST "http://sqbmplus_server:8000/solver/qubo?steps=300&loops=0&target=-5&timeout=10"
--data-binary "@qubo.txt"

HTTP/1.1 200 OK
X-Calculation-Time: 0.079
X-ID: r3501222743
Content-Type: application/json; charset=utf-8
Content-Length: 181
ETag: W/"b5-TUBZD4uvYgfePoE1iQ163oisl9w"
Date: Tue, 17 Jan 2023 09:22:40 GMT
Connection: keep-alive
Keep-Alive: timeout=5

{"id":"r3501222743","time":0.079,"wait":0.001,"message":"reached","runs":110,"value":-5,"result":[0,0,1,1,0],"param":
{"algo":20,"steps":300,"dt":0.7796917,"C":0.1791543},"count":30}

Example of outputting multiple solutions

curl -i -H "Content-Type: application/octet-stream" -X POST "http://sqbmplus_server:8000/solver/qubo?maxout=3" --data-binary "@qubo.txt"

HTTP/1.1 200 OK
X-Calculation-Time: 10.048
X-ID: r2036897887
Content-Type: application/json; charset=utf-8
Content-Length: 410
ETag: W/"19a-VrKf6zNLBNSDbkqrDi4G+A1U97w"
Date: Tue, 17 Jan 2023 09:23:40 GMT
Connection: keep-alive
Keep-Alive: timeout=5

{"id":"r2036897887","time":10.048,"wait":0,"message":"timeout","runs":507080,"value":-5,"result":[0,1,0,0,1],"param":
{"algo":205,"steps":2,"dt":0.7796917,"C":0.1791543},"count":95629,"others":[{"value":-5,"result":[0,0,1,1,0],"param":
{"algo":205,"steps":2,"dt":0.7796917,"C":0.1791543},"count":95694},{"value":-5,"result":[1,1,0,0,1],"param":
{"algo":205,"steps":2,"dt":0.7796917,"C":0.1791543},"count":96091}]}

Example of using an HDF5 file as input data

curl -X POST -H "Content-Type: application/octet-stream" "http://sqbmplus_server:8000/solver/qubo?timeout=1" --data-binary @qubo.h5

{"id":"r4139464394","time":1.043,"wait":0,"message":"timeout","runs":70790,"value":-5,"result":[0,0,1,1,0],"param":
{"algo":20,"steps":2,"dt":0.7796917,"C":0.1791543},"count":13150}

The following sample program is used to convert a MatrixMarket format file to an HDF5 file.

#!/usr/bin/env python3

-*- coding: utf-8 -*-

import os, itertools as it

import argparse

import numpy as np

import h5py

from scipy.sparse import csr_matrix

comp = 'gzip'

opts = 1

def triangular(M):

 '''

 Converts a matrix to a lower triangular matrix. Keep the value of xMx unchanged.

 Argument:

 M (Numpy array): Matrix

 Return:

 MM (Numpy array): Lower triangular matrix

 '''

 MM = np.zeros(M.shape)

 for i in range(M.shape[0]):

 for j in range(M.shape[1]):

 if i > j:

 MM[i,j] = M[i,j] + M[j,i]

 elif i == j:

 MM[i,j] = M[i,j]

 return MM

def parse_qubo(file):

 """

 Read Matrix Market format

 Argument:

 file: Matrix Market format

 Return:

 H (Numpy array): Matrix representing the quadratic terms of the objective function

 """

 stm = (line.strip() for line in file)

 # header

 _ = next(stm)

 n_vars, _, nnz = map(int, next(stm).split())

 H = np.zeros((n_vars, n_vars))

 for s0,s1,s2 in map(str.split, it.islice(stm, nnz)):

 H[int(s0)-1,int(s1)-1] = float(s2)

 return H

def write_matrix_HDF5(M, quboFileName, path, comp_flag, form):

 '''

 Create HDF5 file to input to SBM

 This method writes matrix data to a file.

 Argument:

 M (Numpy array): QUBO matrix

 quboFileName (String): hdf5 format file name of output destination

 path (String): A path composed of hdf5 groups and subgroups. Example "category1/category2"

 comp_flag (Boolean): compression or not. True or False

 form (String): The format that holds the matrix. "csr" or "dense" (retains all elements including 0)

 Return:

 '''

 if form == 'dense':

 with h5py.File(quboFileName, mode='a') as hf:

 group = hf.create_group(f'/{path}')

 # data type is np.float32

 if comp_flag == True:

 temp = group.create_dataset(name='data', shape=M.shape, dtype=np.float32, data=M,

 compression=comp, compression_opts=opts)

 else:

 temp = group.create_dataset(name='data', shape=M.shape, dtype=np.float32, data=M)

 temp.attrs['format'] = 'dense'

 hf.close()

 elif form == 'csr':

 MM = csr_matrix(M)

 # Save with the following layout

 with h5py.File(quboFileName, mode='a') as hf:

 group = hf.create_group(f'/{path}')

 # data type is np.float32

 if comp_flag == True:

 temp = group.create_dataset(name='data', shape=MM.data.shape, dtype=np.float32,

 compression=comp, compression_opts=opts)

 else:

 temp = group.create_dataset(name='data', shape=MM.data.shape, dtype=np.float32)

 temp[:] = MM.data[:]

 temp.attrs['format'] = 'csr'

 if comp_flag == True:

 temp = group.create_dataset(name='shape', shape=(len(M.shape),), dtype=np.int32,

 compression=comp, compression_opts=opts)

 else:

 temp = group.create_dataset(name='shape', shape=(len(M.shape),), dtype=np.int32)

 temp[:] = M.shape[:]

 # indices type is np.uint32

 if comp_flag == True:

 temp = group.create_dataset(name='indices', shape=MM.indices.shape, dtype=np.uint32,

 compression=comp, compression_opts=opts)

 else:

 temp = group.create_dataset(name='indices', shape=MM.indices.shape, dtype=np.uint32)

 temp[:] = MM.indices[:]

 # indptr type is np.uint32

 if comp_flag == True:

 temp = group.create_dataset(name='indptr', shape=MM.indptr.shape, dtype=np.uint32,

 compression=comp, compression_opts=opts)

 else:

 temp = group.create_dataset(name='indptr', shape=MM.indptr.shape, dtype=np.uint32)

 temp[:] = MM.indptr[:]

 hf.close()

def main():

 argparser = argparse.ArgumentParser()

 argparser.add_argument("input_file_path", type=str)

 argparser.add_argument("--input_type", type=str, choices=['qplib', 'qubo'], default='qplib')

 argparser.add_argument("--format", type=str, choices=['csr', 'dense'], default='csr')

 argparser.add_argument("--comp", action='store_true')

 args = argparser.parse_args()

 comp = args.comp

 form = args.format

 # Create output file name

 REQ_HDF5 = os.path.splitext(os.path.basename(args.input_file_path))[0] + '.h5'

 print('output:', REQ_HDF5)

 if os.path.exists(REQ_HDF5):

 os.remove(REQ_HDF5)

 with open(args.input_file_path) as f:

 if args.input_type == 'qplib':

 (_, _, p_sense, H_o, g_o, f_o, A_o, cl_o, cu_o) = parse_qplib(f)

 n = H_o.shape[0]

 m = A_o.shape[0]

 if (p_sense.lower() == "maximize"):

 H, g = -H_o, -g_o

 else:

 H, g = +H_o, +g_o

 write_matrix_HDF5(triangular(H), REQ_HDF5, '/qubo', comp, form)

 write_vector_HDF5(g, REQ_HDF5, '/linear', comp)

 # Group constraints in one directory

 write_matrix_HDF5(A_o, REQ_HDF5, '/constraints/coeff', comp, form)

 write_vector_HDF5(cl_o, REQ_HDF5, '/constraints/lower', comp)

 write_vector_HDF5(cu_o, REQ_HDF5, '/constraints/upper', comp)

 else:

 H = parse_qubo(f)

 write_matrix_HDF5(H, REQ_HDF5, '/qubo', comp, form)

if __name__ == '__main__':

 main()

qplib solver API
The qplib solver API solves a quadratic programming problem consisting of binary variables, a quadratic function as the objective function, and linear
constraints. Aside from the QUBO coefficient matrix, which is the objective function, the qplib solver API receives linear constraints and returns the best
solution found.

Definition of a problem (linear-constrained quadratic binary programming problem)

variable (is the decision variable vector, is the element):

parameter:

constrained quadratic programming problem:

, which is used in the objective function, is a QUBO matrix, while is a coefficient vector of a linear term.
, which is used in linear constraint conditions, is an matrix. is the number of constraints, whereas is the number of variables.

Based on the matrix described above, multiple linear constraints like the three right above are combined and expressed as .
In the example above, vectors expressed as , are obtained.

Here, must satisfy one of the following constraints, where the m-th component of an vector is expressed as :
Inequality constraints with the upper and lower boundaries

Inequality constraints without the upper boundaries

Inequality constraints without the lower boundaries

Equality constraints

QUBO matrix, each element of B vector must have absolute value less than or equal to 1e+20.
If the absolute value of each element of the A matrix, LHS, and RHS vectors exceeds 1e+20, scale while maintaining the constraint so that each
element of the A matrix, LHS, and RHS does not exceed 1e+20.

Request specifications of the qplib solver API

HTTP request

http://{ip}:{port}/solver/{solver}?{parameter}
select qplib as {solver}.

Request header

Table 11 Request header field and a variable that need to be set

Header field Description

Content-Type application/octet-stream

Request parameters

In addition to the parameters available in qubo solver API, the following parameters are also available.

Table 12 qplib solver API specific parameters

x x i

x ∈i R or x ∈i 0, 1{ }

Q,A,LHS,RHS

minimize x ⋅
2
1 T Q ⋅ x + B ⋅ x

subject to LHS ≤ A ⋅ x ≤ RHS

Q B

A M × N M N

−1 ≤ x +1 x +2 x ≤3 1
−3 ≤ x +1 x ≤3 1
−4 ≤ x ≤1 1

LHS ≤ A ⋅ x ≤ RHS

LHS = {−1, −3, −4} RHS = {1, 1, 1}

LHSandRHS LHS LHS m

LHS <m RHS , LHS ∈m m R, RHS ∈m R

LHS ∈m R,RHS =m + inf

LHS =m − inf,RHS ∈m R

LHS =m RHS , LHS ∈m m R, RHS ∈m R

Parameter Default Description

PD3Orate 0

Parameter that determines the number of PD3O algorithm execution steps. SQBM+ searches for solutions using the SB
algorithm, but if PD3Orate is set to anything other than 0, it also searches for solutions using another algorithm (called
the PD3O algorithm). For the steps of the SB algorithm, the PD3O algorithm performs PD3Orate*steps times to update
decision variables.

phi 0
Parameters that determine the behavior of the PD3O algorithm. Specify a real number between 0 and 1.
If it is close to 0, it behaves like the SB algorithm. If it is close to 1, it narrows the search range of solutions, but it may find
a better solution than the SB algorithm.

Problem data specification

In the problem data specification, an HDF5 format file and a qplib format file can be used.

HDF5 format

An HDF5 file that the qplib solver API can use should be configured as below.
Specify 3.40283e+38 when specifying inf.

Table 13 HDF5 file format used by the qplib solver API

Structure Group name or the content

/qubo Q matrix data

/linear B vector data

/constraints group name for the constraint conditions

    /coeff A matrix data

    /lower LHS vector data

    /upper RHS vector data

Each data set in an HDF5 file should follow the rules below:

Table 14 Attribute settings for each data type

Data Data type Content attributes

vector array
Define a vector as a one-dimensional array. The data type of each component is float32.
For the attribute, set the "format" to "dense" .

sparse matrix Sparse array
Same as qubo solve-compatible HDF5 format.
For the attribute, set the "format" to "csr" .

dense matrix Dense array
Same as qubo solver API-compatible HDF5 format.
For the attribute, set the "format" to "dense" .

 Q matrix data
Dense array
Sparse array

To set data as a dense matrix, set it as the data of the Dense array data type.
To set data as a sparse matrix, set it as the data of the Sparse array data type.

 B vector array Set the "format" to "dense" .

 A matrix data
Dense array
Sparse array

To set data as a dense matrix, set it as the data of the Dense array data type.
To set data as a sparse matrix, set it as the data of the Sparse array data type.

 LHS vector array Set the "format" to "dense" .

 RHS vector array Set the "format" to "dense" .

qplib format

The qplib solver API uses a format that sets information by tag specification equivalent to the information set by QPLIB[4]. This format is hereafter
referred to as the qplib format. See http://qplib.zib.de/doc.html for more information about QPLIB. The qplib format categorizes problem types by
objective function, variable type, and constraint type. For problem types, specify a total of three types: Objective type, Variables type, and Constraints
type. Each of these is specified using one alphabet. For available types and the details about specified strings, see http://qplib.zib.de/doc.html. The
qplib format is also used by the pubo solver API, so this chapter also contains information on using it with the pubo solver API. In a qplib format file,
enter the following three items in the file header:

http://qplib.zib.de/doc.html
http://qplib.zib.de/doc.html

Problem name: string that starts with "QPLIB_".
Problem type settings:

qplib solver API: Select the problem type from ['QBB', 'QBL', 'QCB', 'QCL', 'QGB', 'QGL'].
pubo solver API: Select the problem type from ['QBB','QCB', 'QGB'].

To obtain the minimum value of the objective function, specify "minimize"; to obtain the maximum value, specify "maximize".

Next, enter the problem settings in the file using the tags described in Table 15.
When specifying inf, specify 1.79769313486232e+308.

Table 15 Setting tag information

tag description

number of variables

Specify the number of variables to be used.
For the qplib solver API, specify an integer between 2 and 10,000,000.
For the pubo solver API, specify an integer between 2 and 100,000.
Example
3 # number of variables

number of
constraints

Specify the number of linear constraint conditions to be used. Note that with the Constraints type B (without linear constraint
conditions), specification of a number other than 0 (zero) results in an error. Pubo solver is not available.
Specify an integer between 0 and 1,000,000.
Example
3 # number of constraints

default left-hand-
side value

The settings for the lower limit value of all linear constraint conditions are made for this tag. Specify the default configuration
value for all the components of an LHS vector. With the Constraints type B (without linear constraint conditions), do not use
this tag. Pubo solver is not available.
Specify a real number.
Constraints type
Example
0 # default left-hand-side value

default right-hand-
side value

The settings for the upper limit value of all linear constraint conditions are made for this tag. Specify the default
configuration value for all the components of an RHS vector. With the Constraints type B (without linear constraint
conditions), do not use this type. Pubo solver is not available.
Specify a real number.
Example
0 # default right-hand-side value

default value for
linear coefficients in
objective

Specify the default configuration value of all the components of a B vector.
Specify a real number whose absolute value is 1e+20 or less.
Example
0 # default value for linear coefficients in objective

default variable
type

Specify the default data type of each variable. With Variables type B (binary) or C (continuous variable), do not use this tag.
Select one of the following:
0: continuous real number
1: binary
Example
1 # default variable type

default variable
upper bound value

Specify the domain's upper limit value of all the variables. With the Variables type B (binary), do not use this tag.
Specify a real number greater than or equal to -1e+20.
Example
1.5 # default variable upper bound value

default variable
lower bound value

Specify the domain's lower limit value of all the variables. With the Variables type B (binary), do not use this tag.
Specify a real number less than or equal to 1e+20.
Example
1.5 # default variable lower bound value

number of quadratic
terms in objective

The settings for a QUBO matrix are made for this tag. Specify an integer of 1 or more as the setting value of the tag, and
specify the setting value of each matrix component for that integer. Note that the maximum number of nonzero elements in
a matrix is no more than 100,000,000 for the qplib solver API and no more than 10,000,000 for the pubo solver API. The
matrix components for which no settings are made here are set to 0 (zero). Specify a real number whose absolute value is

tag description

1e+20 or less.
Make the following settings. Here the variable index starts with 1 and is numbered consecutively from the top of the variable
vector to the bottom. Specify variable indices in descending order.

number of non-zero 's # number of quadratic terms in objective
[variable index] [variable index] [coefficient value]
[variable index] [variable index] [coefficient value]
…… Repeat above as many times as the number of non-zero 's  ……
[variable index] [variable index] [coefficient value]
Example
2 # number of quadratic terms in objective
2 1 -2
3 2 3.5

number of pubo
terms in objective

Specify terms of cubic or higher. Specify an integer of 1 or more as the setting value of the tag, and specify the setting value
of each matrix component for that integer. However, the number of elements that can be set must be 10,000,000 or less
together with the number of quadratic terms in objective. This tag is only available for the pubo solver API. Specify a real
number whose absolute value is 1e+20 or less.
Specify as follows. Variable indices start from 1 and are numbered sequentially from the top of the variable vector.

Number of nonzero # number of quadratic terms in objective
[variable index] ... number of degree ... [variable index] [coefficient value]
[variable index] ... number of degree ... [variable index] [coefficient value]
…… Repeat above as many times as the number of non-zero and ……
[variable index] ... number of degree ... [variable index] [coefficient value]
Example
2 # number of pubo terms in objective
2 1 1 -2
3 2 2 3.5

number of non-
default linear
coefficients in
objective

The B vector that has been set in the "default value for linear coefficients in objective" is overwritten. Specify the settings
value of components of the vector to overwrite. For those components for which no settings are made here, the value that
has been set to the "default value for linear coefficients in objective" tag is used. Specify a real number whose absolute
value is 1e+20 or less.
Make the following settings. Here the variable index starts with 1 and is numbered consecutively from the top of the variable
vector to the bottom.

number of components of the B vector to overwrite # number of non-default linear coefficients in objective
[variable index] [coefficient value]
[variable index] [coefficient value]
…… Repeat above as many times as the number of components. ……
[variable index] [coefficient value]
Example
2 # number of non-default linear coefficients in objective
1 -2
2 3.5

number of linear
terms in all
constraints

The settings for an A matrix are made for this tag. Specify the settings value of each matrix component. Note that an A
matrix is a matrix in which the value specified in the "number of constraints" tag corresponds to the length of the row, and
the number of variables, to the length of the column. Pubo solver is not available. The matrix components for which no
settings are made here are set to 0 (zero).
Make the following settings. Here the variable index starts with 1 and is numbered consecutively from the top of the variable
vector to the bottom.

number of non-zero 's # number of linear terms in all constraints
[variable index] [variable index] [coefficient value]
[variable index] [variable index] [coefficient value]
…… Repeat above as many times as the number of non-zero 's ……
[variable index] [variable index] [coefficient value]
Example
2 # number of linear terms in all constraints

Q ij

Q ij

T ijk T ijkl

A ij

A ij

tag description

2 1 -2
3 2 3.5

number of non-
default left-hand-
sides

The LHS vector that has been set in the "default left-hand-side value" is overwritten. Specify the settings value of
components of the vector to overwrite. For those components for which no settings are made here, the value that has been
set to the "default left-hand-side value" tag is used. Pubo solver is not available.
Make the following settings. Here the variable index starts with 1 and is numbered consecutively from the top of the variable
vector to the bottom.

number of the LHS vector to overwrite # number of non-default left-hand-sides
[variable index] [lower limit value of the constraint conditions]
[variable index] [lower limit value of the]
…… Repeat above as many times as the number of components. ……
[variable index][lower limit value of the constraint conditions]
Example
2 # number of non-default left-hand-sides
1 -2
2 3.5

number of non-
default right-hand-
sides

The RHS vector that has been set in the "default right-hand-side value" is overwritten. Specify the settings value of
components of the vector to overwrite. For those components for which no settings are made here, the value that has been
set to the "default right-hand-side value" tag is used. Pubo solver is not available.
Make the following settings. Here the variable index starts with 1 and is numbered consecutively from the top of the variable
vector to the bottom.

number of the RHS vector to overwrite # number of non-default right-hand-sides
[variable index] [upper limit value of the constraint conditions]
[variable index] [upper limit value of the constraint conditions]
…… Repeat above as many times as the number of components. ……
[variable index] [upper limit value of the constraint conditions]
Example
2 # number of non-default right-hand-sides
1 -2
2 3.5

number of non-
default variable
upper bounds

The domain's upper limit value of each variable that has been set to the "default variable upper bound value" is overwritten.
Specify a value equal to or greater than -1e+20 for the domain's upper limit value of the variable to overwrite. For those
components for which no settings are made here, the value that has been set to the "default variable upper bound value"
tag is used. With the Variables type B (binary), do not use this tag.
Make the following settings. Here the variable index starts with 1 and is numbered consecutively from the top of the variable
vector to the bottom.

number of the domain's upper limit values to overwrite # number of non-default variable upper bounds
[variable index] [upper limit value]
[variable index] [upper limit value]
…… Repeat above as many times as the number of the domain's upper limit values. ……
[variable index] [upper limit value]
Example
2 # number of non-default variable upper bounds
1 -2
2 3.5

number of non-
default variable
lower bounds

The domain's lower limit value of each variable that has been set to the "default variable lower bound value" is overwritten.
Specify a value equal to or less than 1e+20 for the domain's lower limit value of the variable to overwrite. For those
components for which no settings are made here, the value that has been set to the "default variable lower bound value"
tag is used. With the Variables type B (binary), do not use this tag.
Make the following settings. Here the variable index starts with 1 and is numbered consecutively from the top of the variable
vector to the bottom.

number of the domain's upper limit values to overwrite # number of non-default variable lower bounds
[variable index] [lower limit value]

tag description

[variable index] [lower limit value]
…… Repeat above as many times as the number of the domain's lower limit values. ……
[variable index] [lower limit value]
Example
2 # number of non-default variable lower bounds
1 -2
2 3.5

number of non-
default variable
types

The data types of variables that have been set in the "default variable type" is overwritten. Specify the data types of the
variables to overwrite. For those data types of variables for which no settings are made here, the value that has been set to
the "default variable type" tag is used. With the Variables type B (binary) or C (continuous variable), do not use this tag.
Make the following settings. Here the variable index starts with 1 and is numbered consecutively from the top of the variable
vector to the bottom.

number of data types of variables to overwrite. # number of non-default variable types
[variable index] [data type]
[variable index] [data type]
…… Repeat above as many times as the number of data types. ……
[variable index] [data type]
Example
2 # number of non-default variable types
1 0
2 0

Restrictions on input problem data

The problem size that can be handled by the qplib solver API has the following limitations:

The number of variables should be equal to or less than 10,000,000.
The number of nonzero elements in the matrix is

Must be less than or equal to 100,000,000 for qplib format.
Must be less than or equal to 500,000,000 in HDF5 format (Q matrix is sparse).
Must be less than or equal to 800,000,000 in HDF5 format (where the Q matrix is a dense matrix).

The number of constraints should be equal to or less than 1,000,000.
HDF5 file size must be less than 2GB.

Response specifications of the qplib solver API

Response status

Same as the response status described in Response status common to all solvers.

Response header

Same as the response header described in Response header common to all solvers.

Response body

Same as the response body described in Response body common to all solvers, except for the properties in Table 16.

Table 16 Response body specifications of the qplib solver API

Property name Description

value Evaluation value calculated by the objective function of a quadratic programming problem.

result An array of variables. If an array has five variables, its "result" would be [0,1,1,0,0] .

param Displays qplib solver API-specific parameters, including algo, steps, dt, and C.

Example of using the qplib solver API

Sample problem description (knapsack problem)

Taking a 0-1 knapsack problem as an example, this section describes how to use the qplib solver API. A 0-1 knapsack problem can be formulated as:

 v x

x
max

i

∑ i i

where is the value of the item , determines whether the item is selected (1) for each binary variable or not (0), is the weight of the item , and
 is the upper limit value of the net weight of the selected items.

In this sample problem, let us set , , and as follows:

With the settings above, this knapsack problem can be transformed into the following quadratic programming problem:

where

Sample qplib format file

Converting the sample problem in the previous section into qplib format, we would obtain the following:

knapsack.qplib

QPLIB_knapsack

QBL

minimize

4 # number of variables

1 # number of constraints

0 # default left-hand-side value

10 # default right-hand-side value

0 # default value for linear coefficients in objective

4 # number of quadratic terms in objective

1 1 -22

2 2 -26

3 3 -34

4 4 -38

4 # number of linear terms in all constraints

1 1 2

1 2 3

1 3 5

1 4 7

Execution of the problem above results in the following:

curl -i -H "Content-Type: application/octet-stream" -X POST "http://sqbmplus_server:8000/solver/qplib" --data-binary @knapsack.qplib

HTTP/1.1 200 OK
X-Calculation-Time: 10.014
X-ID: r3552467021
Content-Type: application/json; charset=utf-8
Content-Length: 180
ETag: W/"b4-gY2unru0uk3uTgzDl2EozRSOLo0"
Date: Tue, 17 Jan 2023 10:14:43 GMT
Connection: keep-alive
Keep-Alive: timeout=5

s.t. w x ≤
i

∑ i i W

v i i x i i w i i

W

v w W

v = [11 13 17 19]
w = [2 3 5 7]

W = 10

 x Qx
x

min
2
1 T

s.t. LHS ≤ Ax ≤ RHS

Q = −

22
0
0
0

0
26
0
0

0
0

34
0

0
0
0

38
A = [2 3 5 7]

LHS = 0
RHS = 10

{"id":"r3552467021","time":10.014,"wait":0.001,"message":"timeout","runs":494260,"value":-60,"result":[1,1,1,1],"param":
{"algo":205,"steps":2,"dt":1,"C":0.01130918},"count":101495}

The solution obtained is " ".

Example of setting parameters

Same as Example of setting parameters.

x = [1, 1, 1, 1]

pubo solver API
The pubo solver API performs optimal search for combinatorial optimization problems involving up to fourth order terms.

Definition of the problem (a problem with higher order terms up to order 4)

variables (is the decision variable vector, is the element):

Parameters:

Objective function:

 and used in the objective function are the 4th order interaction coefficient of the optimization problem, the 3rd order interaction
coefficient of the optimization problem, and the optimization problem is the second-order interaction coefficient of , the linear term coefficient of the
optimization problem.

Each element of must be less than or equal to 1e+20 in absolute value.

Request specifications of the pubo solver API

HTTP requests

http://{ip}:{port}/solver/{solver}?{parameter}
, select pubo as the {solver}.

Request header

Table 17 Request header to be set and setting values

Header field Description

Content-Type application/octet-stream

Request parameters

Same parameters as available in qubo solver API.

Problem data specification

Problem data specifications can use qplib format files. For details, refer to qplib format.

Restrictions on input problem data

The problem size that the pubo solver API can handle has the following limitations.

The number of variables must be less than or equal to 100,000.
The number of nonzero elements in the matrix must be less than or equal to 10,000,000.

However, due to memory constraints, it may not be possible to obtain a solution even if the number is less than the limit. The recommended EC2
instance type is an EC2 instance with GPU memory of P3 series or higher.
Also, depending on the combination of the number of variables and the number of non-zero elements in the matrix, pre-calculation processing may take
time.

Response specifications of the pubo solver API

Response status

Same as the response status described in Response status common to all solvers.

Response header

Same as the response header described in Response header common to all solvers.

Response body

Same as the response body described in Response body common to all solvers, except for the properties in Table 18.

x x i

x ∈i R or x ∈i {0, 1}

T ,T ,Q ,B ijkl ijk ij i

minimize T x x x x +
4!
1

ijkl

∑ ijkl i j k l T x x x +
3!
1

ijk

∑ ijk i j k Q x x +
2!
1

ij

∑ ij i j B x

i

∑ i i

T ,T ,Q ,ijkl ijk ij B i

T ,T ,Q ,B ijkl ijk ij i

Table 18 Response body specification of pubo solver API

Property name Description

value Evaluation value calculated by the objective function.

result An array of variables. If an array has five variables, its "result" would be [0,1,1,0,0] .

param Displays qplib solver API-specific parameters, including algo, steps, dt, and C.

Examples of using the pubo solver API

Sample problem description (MAX-3SAT problem)

An example of the use of the pubo solver API is its application to the maximization problem of satisfaction (hereafter the MAX-SAT problem). The MAX-
SAT problem is the following problem.

Considering the boolean variables , these boolean variables, or which takes the OR operation of the negation of the
boolean variables. You can think of logical formulas such as This is called a clause. The MAX-SAT problem is a problem to find the maximum number of
clauses that can be true among multiple clauses to be satisfied. When the clause consists of two boolean variables, it is called a MAX-2SAT problem,
and when it consists of three boolean variables, it is called a MAX-3SAT problem.

Consider the MAX-3SAT problem as an example. Here boolean variables , clauses , ,
.

The following procedure converts the clause into a polynomial and converts it into an objective function that should minimize the MAX-3SAT problem.
(1) Convert a boolean variable to (1-x), with x as a binary variable. Negating a boolean variable converts it to x. A binary variable takes 1 when the
boolean variable is true.
(2) Convert OR operation to product.
(3) Execute the transformations (1) and (2) for all clauses and take the sum.
By the above procedure the MAX-3SAT problem is can be converted to
If you organize this, it will be . Minimizing
this, the constant 1 is not needed as an objective function and can be removed. Finding the decision variable that minimizes the objective function gives
the value of the boolean variable that is the solution to the original MAX-3SAT problem.

Sample qplib format file

The qplib format file for the sample problem dealt with in the previous section looks like this:
The objective function handled by the pubo solver API has a coefficient such as (1/2!) in front of each order term, so be careful about the value you
enter.

max3sat.qplib

QPLIB_max3sat

QBB

minimize

5 # number of variables

0 # default value for linear coefficients in objective

6 # number of quadratic terms in objective

2 1 -4

3 1 -2

3 2 -2

4 3 2

5 3 2

5 4 2

2 # number of pubo terms in objective

3 2 1 12

5 4 3 -6

5 # number of non-default linear coefficients in objective

1 1

2 1

3 -1

4 -1

5 -1

The result of running the above problem is:

curl -i -H "Content-Type: application/octet-stream" -X POST "http://{sqbmplus_server}:8000/solver/pubo?timeout=1" --data-binary @max3sat.qplib

x ,x ,x , ⋅ ⋅1 2 3 ⋅ (x ∨1 ¬x ∨2 x)3

x ,x ,x ,x ,x 1 2 3 4 5 (x ∨1 ¬x ∨2 x)3 (¬x ∨1 x ∨2 x)3 (x ∨3

x ∨4 x)5

(1 − x)x (1 −1 2 x) +3 x (1 −1 x)(1 −2 x) +3 (1 − x)(1 −3 x)(1 −4 x)5

1 + x +1 x −2 x −3 x −4 x −5 2x x −1 2 x x −1 3 x x +2 3 x x +3 4 x x +3 5 x x +4 5 2x x x −1 2 3 x x x 3 4 5

HTTP/1.1 200 OK
X-Calculation-Time: 1.033
X-ID: r3920556539
Content-Type: application/json; charset=utf-8
Content-Length: 184
ETag: W/"b8-r2bdD8hfoN77bHLsEM051yMpi5c"
Date: Mon, 15 May 2023 05:49:13 GMT
Connection: keep-alive
Keep-Alive: timeout=5

{"id":"r3920556539","time":1.033,"wait":0.001,"message":"timeout","runs":57860,"value":-1,"result":[0,1,1,0,1],"param":
{"algo":204,"steps":2,"dt":0.9872935,"C":0.1727053},"count":2405}

The resulting solution is .
From this result the boolean variables , , and are true and and are false.

x = [0, 1, 1, 0, 1]
x 2 x 3 x 5 x 1 x4

How to use the computation API as a sampler
The computation API can obtain not only solutions near the optimal solution, but also multiple solutions that follow the Boltzmann distribution with the
objective function as the energy. SQBM+ users can use these solutions to compute statistical approximations such as means assuming a Boltzmann
distribution.
This function is used by specifying the entry point of the qubo solver API, qplib solver API, or pubo solver API according to the objective function. For
example, if it is a QUBO problem, specify the entry point of the qubo solver API.
This function samples the solution according to the probability distribution of with the objective function H. is a hyperparameter
proportional to the inverse of temperature. Query parameters C and have the relationship .
In addition to specifying the solver, this function requires specifying the required number of samples. Specify the number of samples through the query
parameter (loops). For loops, see Request parameters.
This function needs to find a solution that is not constrained near the optimal solution. To switch to such control of solver processing, flags and
additional information can be specified in the query parameters. The required parameters are:

loops: set number of samples to seek
steps: set a value between 1000 and 10000
maxout: value sufficiently larger than loops
timeout: 0
C: Set a fixed value. Equivalent to the reciprocal of temperature 𝛽 in the sampler
dt: around 0.01 / (). is the representative value of the matrix element size.

In addition to the above, the following must be set as query parameters to use the sampler function.

HMCweight: set to 1
HMCsteps: Set a value between 10 and 100

Constraints:

steps should be increased as becomes smaller.
If and dt are too large, the deviation from the expected distribution becomes large.
If C is too small, the probability distribution approaches white noise.
Specify algo=15,20 if the decision variable is a binary variable, and specify algo=15 if it is a continuous variable.

 exp (−βH)Z
1 β

β β ≃ C

 ×Q̄ C Q̄

dt × HMCsteps

dt × C

Health check API
The health check API within the SQBM+ computation API returns the status of the API.

Request specifications

HTTP request

HTTP method to use: GET
URL configuration: http://{ip}:{port}/healthcheck

ip: IP address of the machine on which the SQBM+ computation API is operating.
port: port number of the SQBM+ server

Request header

No settings are required.

Request parameters

No settings are required.

Response specifications

Response status

If the SQBM+ computation API is working properly, the status code 200 is returned, if not, 503 is returned.
Connection refused if SQBM+ itself is down.

Response header

Table 37 Response header field and a value to be set

Header field Description

Content-Type application/health+json

Response body

The HTTP response body shows the server status.

Table 38 List of response messages

Status code Message Description

200 pass The SQBM+ computation API is working properly.

503 fail The SQBM+ computation API is stopped.

Example of using the Health check API
$ curl -i -X GET "http://sqbmplus_server:8000/healthcheck"
HTTP/1.1 200 OK
Content-Type: application/health+json; charset=utf-8
Content-Length: 17
ETag: W/"11-pEowaKzwbXVLfeOv1lndFqAk+sg"
Date: Thu, 12 Oct 2023 11:12:30 GMT
Connection: keep-alive
Keep-Alive: timeout=5

{"status":"pass"}

Version check API
The Version API within the SQBM+ computation API returns the version of the SQBM+ you are using.

Request specifications

HTTP request

HTTP method to use: GET
URL configuration: http://{ip}:{port}/version

ip: IP address of the machine on which the SQBM+ computation API is operating.
port: port number of the SQBM+ server

Request header

No settings are required.

Request parameters

No settings are required.

Response specifications

Response body

The HTTP response body shows the version of SQBM+ (Table 39).

Table 39 Response body specifications of the Version API

Property name Description

version version name

Example of using the Version API
$ curl -i -X GET "http://sqbmplus_server:8000/version"
HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8
Content-Length: 19
ETag: W/"13-VguZIl+apkiTX3mAkWiJBggcQtU"
Date: Mon, 16 Oct 2023 04:39:20 GMT
Connection: keep-alive
Keep-Alive: timeout=5

{"version":"2.0.1"}

System configuration parameters
System configuration parameters listed in Table 40 can be set in the /home/{user directory}/config file within the SQBM+ server. In the case of AWS,
{user directory} is ec2-user; otherwise it is sbm-user. Usually there is no need to change these values. If you do change the values, restart the SQBM+
server for the changes to take effect in the SQBM+ computation API.

Table 40 System configuration parameters

Parameter default Description

server_port 8000 Port number of the SQBM+ server

payload_limit 2000000000

Maximum size of the request body in bytes. The default is 2GB. If multiple requests that exceed the
default configuration value are issued, computational operations may abend due to memory problems,
which may result in disconnection in communication. If this is the case, reduce the number_of_workers to
be described later. Additionally, it is recommended to issue requests one at a time.

timeout_upper_bound 3600
Upper computation time limit in seconds. Regardless of the value of the timeout parameter, computation
ends when the upper time limit is reached.

number_of_workers 4 Number of worker threads in the SQBM+ server that accepts computation requests.

max_requests 20

Number of computation requests acceptable at one time. The SQBM+ computation API accepts multiple
requests concurrently but calculates them one by one; currently it does not process them in parallel. For
computation requests with sizes more than hundreds of MB, consider issuing those requests one at a
time to avoid a server error.

default_timeout 10 Default value of the computation parameter 'timeout'.

default_maxwait 60 Default value of the computation parameter 'maxwait'.

default_maxout 1 Default value of the computation parameter 'maxout'. Specify an integer greater than or equal to 1.

Maintenance and security

Log files
Log files are created under the /var/log/sqbm-plus/ directory in the SQBM＋ server. To obtain log files, collect them by issuing the scp command from a
machine other than the SQBM+ server.
[important] After collect log files, you must restart EC2 instance.

Figure 11[5] shows an example where an ec2-user collects all the log files in the AWS environment and saves them as logfiles.tgz. If your client EC2
instance uses OpenSSH 8.7 or a later version, use the option -O with the scp command.

$ scp -i private-key.pem -r sqbmplus_server:/var/log/sqbm-plus/ SBM_logs

$ ls SBM_logs

main.log sbm-engine.log start.log

$ tar zcf logfiles.tgz SBM_logs

$ tar tf logfiles.tgz

SBM_logs/

SBM_logs/start.log

SBM_logs/sbm-engine.log

SBM_logs/main.log

Figure 11 Example of collecting log files

Log rotation

Conditions for Log Rotation

When the file size reaches 10MB, log rotation will be performed.

Log rotation behavior

Change the current log file to ***.1. Each past log file increments the last number in the file name by one.
Example: If the log file name is main.log, it will rotate as follows and main.log will be an empty file.

 　Before rotation　　After rotation

 　main.log -> main.log.1

 　main.log.1 -> main.log.2

 　main.log.2 -> main.log.3

 : :

 　main.log.9 -> main.log.10

A maximum of 99 generations of log files can be managed. For main.log, there are 100 files, main.log, main.log.1, ..., main.log.99. The file that was
main.log.99 before log rotation is deleted after rotation.

Troubleshooting

Actions when the SQBM+ stops
The SQBM+ API automatically recovers after it stops. If the API abends, check the API status after a few seconds using the health check API.
Sometimes SQBM+ stops because there is not enough memory to process requests. If there is no response to the request, please check /var/log/sqbm-
plus/main.log, and if there is ERROR a worker died, null, SIGTERM, there is a possibility that the CPU memory is insufficient. Consider an EC2
instance type with more CPU memory. If you see error, [500,"loading error: 3"] in the log, it corresponds to insufficient GPU memory. Consider an EC2
instance type with more GPU memory.
If the health check API does not respond or the message of the response body is "fail", follow the procedure in Log files to collect log files and restart
the server where the SQBM＋ is installed.
There may be a case where there is no problem with the health check API but the SQBM+ computation API still does not respond. If so, do the same as
above. That is, follow the procedure in Log files to collect log files and restart the server.
If the problem persists even after the restart and you need to contact support for help, provide them with your log files.

Actions when the SQBM+ does not response
When solving large problems, it may take some time to receive a response from SQBM+. Even you set the timeout, SQBM+ will take time to response.
When SQBM+ take too long time for you to wait, then stop computation API and restart EC2 instance.

Disclaimer
THE SOFTWARE AND SERVICES ARE PROVIDED "AS IS." YOU AND YOUR USERS ACCEPT AND ASSUME THE ENTIRE RISK AS TO THE
QUALITY, PERFORMANCE AND RESULTS OF ACCESS OR USE OF THE SOFTWARE AND SERVICES. TOSHIBA DIGITAL SOLUTIONS
CORPORATION (TDSL) AND TDSL’S AFFILIATES AND LICENSORS MAKE NO REPRESENTATIONS OR WARRANTIES OF ANY KIND, WHETHER
EXPRESS, IMPLIED, STATUTORY OR OTHERWISE REGARDING THE SOFTWARE AND SERVICES, INCLUDING ANY WARRANTY THAT THE
SOFTWARE AND SERVICES WILL BE UNINTERRUPTED, ERROR FREE OR FREE OF HARMFUL COMPONENTS, OR THAT ANY CONTENT IN
YOUR AWS ACCOUNT, INCLUDING YOUR CONTENT AND DATA, WILL BE SECURE OR NOT OTHERWISE LOST OR DAMAGED. EXCEPT TO
THE EXTENT PROHIBITED BY LAW, TDSL AND TDSL’S AFFILIATES AND LICENSORS DISCLAIM ALL WARRANTIES, INCLUDING ANY IMPLIED
WARRANTIES OF PERFORMANCE, MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A PARTICULAR PURPOSE, NON-
INFRINGEMENT, OR QUIET ENJOYMENT, AND ANY WARRANTIES ARISING OUT OF ANY COURSE OF DEALING OR USAGE OF TRADE.

User's Manual for SQBM+ AWS AMI v2.0.1

October 23, 2023

A1 edition
MWS5554A

Published by
72-34 Horikawa-cho, Saiwai-ku Kawasaki-shi, Kanagawa 212-8585, Japan
2023 Toshiba Digital Solutions Corporation

Duplication or reproduction of this documentation is prohibited without the prior written consent.

1. However, it does not guarantee optimal solutions. ↩
2. HDF is a registered trademark of The HDF Group. ↩
3. In this example and all other examples that follow, substitute sqbmplus_server with the host name of the SQBM+ computation API you are using. ↩
4. ©2017-2023 by Zuse Institute Berlin and GAMS.

Documentation︓ https://qplib.zib.de/
For information about the author, refer to the link above.
QPLIB is licensed under CC-BY 4.0. (https://creativecommons.org/licenses/by/4.0/) ↩

5. Substitute private_key.pem with the file path to the private key for connecting to the SQBM+ server; substitute sqbmplus_server with the host name
of the SQBM+ server. ↩

https://qplib.zib.de/
https://creativecommons.org/licenses/by/4.0/

