International Symposium on Highly Efficient Accelerators and Reconfigurable Technologies (HEART '21), June 21-23, 2021, Online, Germany

Keynote presentation

Large-scale combinatorial optimization in real-time systems by FPGA-based accelerators for simulated bifurcation

Kosuke TATSUMURA

Chief Research Scientist, Corporate Research and Development Center

Project Manager, New Business Development Office

Contents

- Introduction:
- Combinatorial optimization in real-time systems
- O2 Simulated bifurcation (SB)
- 03 Real-time systems that make optimal responses
- 04 Scaling out Ising machines

Combinatorial optimization problem*

Economically valuable but computationally hard

*Find a combination of discrete values, $(s_1, s_2, ...)$, that minimizes a cost function of the discrete variables, Cost_Func $(s_1, s_2, ...)$

Ising machines

Special-purpose hardware devices for quickly solving combinatorial optimization

D-Wave Sys.*1 2011-

Quantum Annealer

HITACHI *2 2015-

CMOS annealing machine

U-Virginia*6 2020-

Coupled oscillators

FUJITSU *3 2016-

Digital annealer

HP/U-Michigan*7 2020-

Memristor HNN

NTT/Stanford/U-Tokyo *4 2016-

Coherent Ising machine (CIM)

U-Roma*5 2019-

Spatial-photonic Ising machine (SPIM)

Toshiba*8 2019-

Simulated bifurcation

© 2021 Toshiba Corporation

^{*1} https://www.dwavesys.com/d-wave-two-system

^{*2} https://www.hitachi.co.jp/New/cnews/month/2019/02/0219.html

^{*3} https://www.fujitsu.com/global/about/resources/news/press-releases/2018/0515-01.html

^{*4} https://www.ntt.co.jp/news2017/1711e/171120a.html

^{*5} D. Pierangeli, et al., Phys. Rev. Lett. **122**, 213902 (2019).

^{*6} A. Mallick, et al., Nature Communications **11**, 4689 (2020).

^{*7} F. Cai, et al., Nature Electronics 3, 409 (2020).

^{*8} https://www.global.toshiba/ww/technology/corporate/rdc/rd/topics/21/2103-03.html

For real-time systems

Ising machines may allow those systems to choose the optimal response from among all the candidates -Rational decision-making in real-time systems-

Financial transaction system*1

Video processing*2

Swarm robotics

Real-time systems:

- -respond to rapid-changing situations with specified time constrains
- -decision making based on a simple conditional judgement (conventional)

The story of the birth of SB, https://www.toshiba-clip.com/en/detail/p=76

A quantum-inspired algorithm for combinatorial optimization having Plentiful Parallelism

Simulated Bifurcation (SB)

Quantum Bifurcation (QB) machine

a quantum adiabatic optimization method [H. Goto, Sci. Rep **6**, 21686, '16]

Plentiful parallelism

Simulated Annealing (SA)

This talk: Proposal & demonstration

Real-time systems that make *optimal* responses enabled by FPGA-based SB accelerators

Simulated bifurcation (SB) & FPGA-based accelerators for SB

Real-time systems that make optimal responses:

An ultra-fast financial transaction machine

Scale-out architecture of Ising machines with full connectivity using the high parallelism of SB

Contents

- Introduction:
- O1 Combinatorial optimization in real-time systems
- O2 Simulated bifurcation (SB)
- 03 Real-time systems that make optimal responses
- 04 Scaling out Ising machines

[Andrew Lucas, Frontiers in Physics 2, 5 (2014)] provides Ising formulations for many NP-complete/hard problems, including all of Karp's 21 NP-complete problems

- 1. Any NP problems can be converted to the Ising problem with P-time 2. Ising machine searches for the ground-state of Ising spin model
- Combinatorial optimization

NP-hard

Ising problem

NP-hard & NP-complete

Ising machine Special-purpose

search for ground-state *s* minimizing *E*

Ising energy

$$E = -\sum_{ij} j_{ij} s_i s_j + \sum_{i} h_i s_i$$

$$solution$$

$$Spin configuration, S$$

The story of the birth of SB

Simulated bifurcation was "discovered" from a quantum computer

Quantum Bifurcation (QB) machine [H. Goto, Sci. Rep. 2016]

$$H_{q}(t) = \hbar \sum_{i=1}^{N} \left[\frac{K}{2} (a_{i}^{\dagger 2} a_{i}^{2}) - \frac{p(t)}{2} (a_{i}^{\dagger 2} + a_{i}^{2}) + \Delta (a_{i}^{\dagger} a_{i}) \right] - \hbar \xi_{0} \sum_{i=1}^{N} \sum_{j=1}^{N} J_{i,j} (a_{i}^{\dagger} a_{j}) + \Delta (a_{i}^{\dagger} a_{j}) \right] - \hbar \xi_{0} \sum_{i=1}^{N} \sum_{j=1}^{N} J_{i,j} (a_{i}^{\dagger} a_{j}) + \Delta (a_{i}^{\dagger} a_{j})$$

Classical Bifurcation (CB) machine [H. Goto, Sci. Rep. 2016]

Classicization

$$H_{c}(\mathbf{x}, \mathbf{y}, t) = \sum_{i=1}^{N} \left[\frac{K}{4} (x_{i}^{2} + y_{i}^{2})^{2} - \frac{p(t)}{2} (x_{i}^{2} - y_{i}^{2}) + \frac{\Delta_{i}}{2} (x_{i}^{2} + y_{i}^{2}) \right] - \frac{\xi_{0}}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} J_{i,j} (x_{i}x_{j} + y_{i}y_{j})$$

↓ Algorithmic twist ↓ for speed-up

Simulated Bifurcation (SB) algorithm

[Goto, Tatsumura, Dixon, Science Advances 5, eaav2372 (2019)]

There was No guarantee. We found that CB works very well and has an outstanding characteristics, i.e. parallelism.

Based on the quantum adiabatic theorem

Science Advances

"Combinatorial optimization by simulating adiabatic bifurcations in nonlinear Hamiltonian systems"

H. Goto et al.

April 19, 2019 Massi

How it works: Simulated Bifurcation (SB)

N-body system dynamically searches for a good solution

Movement of the system in N-dimensional space

If N is large,

find a global minimum (or a local minimum close to the grand-state) from among 2^N local minima

How it works: Simulated Bifurcation (SB)

Time evolution of N-body system

Movements of N(=4000) spin-variables as a function of time

Algorithm of SB and it's parallelism

SB step: spin state at $t_{n+1} \leftarrow$ the previous state at t_n

FPGA-based accelerator for simulated bifurcation

Large-scale, massively parallel, and high utilization

Problem	complete-graph MAX-CUT
Machine size	4,096-size (on Arria10 FPGA)
Architecture	
Pr/Pc/Pb	32/32/8
# of MAC PEs	8,192
Effective activity	92%
Resource	
ALM	40%
BRAM	56%
DSP	7%
System Clock	[MHz]
Fsys	269

@all-to-all-connected

Evaluation: FPGA-SB vs. CIM

14X faster, 288X more energy efficient than CIM

Evaluation: FPGA-SB vs. GPU-SB

FPGA is computation-bound, GPU memory-bound -11X faster, 26X more energy efficient than GPU-SB

Why SB is faster than SA

Maximum computation parallelism: N² for SB, N for SA SB can be further accelerated by more parallel computing

our best-optimized implementation **Simulated bifurcation (SB)** 800,000 800,000 Parallel updating Simulated bifurcation Simulated annealing N = 16,384**Quality of solution** Cut value **Sut value** HNN HNN 750,000 750,000 828X **Simulated Annealing (SA)** faster Sequential updating bifurcation annealing 700,000 700.000 10⁻³ 10⁻² 10^{-4} 10-1 40 50 70 80 90 100 Number of steps Time [sec] The amount of computation **Computation time** (The amount of pair interactions evaluated)

2nd-gen simulated bifurcation technology (Feb, '21)

Incorporated quasi-quantum effects, got further faster, larger & higher-quality

Improvement of Quality-of-Solution Quasi-quar

 $\overset{5}{\mathsf{x}}$

Quasi-quantum tunneling effects

Science Advance

High-performance combinatorial optimization based on classical mechanics

H. Goto et a

February 03, 2021

-

10X faster than 1st-gen SB

Solves 1M-spin problem in 30 min

mechanics"

H. Goto et a

 High-performance combinatorial optimization based on classical

Science Advances

2nd-gen simulated bifurcation technology (Feb, '21)

Comprehensive comparison with state-of-the-art Ising machines

Competitors

SB: Simulated bifurcation

QA: Quantum annealer

CIM: Coherent Ising machine

DA: Digital annealer

SimCIM: Simulated CIM

RBM: Restricted Boltzmann machine

MA: Momentum annealing

SB technology is competitive

Contents

- Introduction:
- O1 Combinatorial optimization in real-time systems
- 02 Simulated bifurcation (SB)
- Real-time systems that make optimal responses
- 04 Scaling out Ising machines

FPGA accelerator for SB: For what?

Real-time systems that make optimal responses System-wide response time (in sub-ms) is CRITICAL

Ultralow latency

Sub-ms latency has not yet been demonstrated for any Ising machines

Conv.

Detection of cross-currency arbitrage opportunity

Optimal path search in a directed graph -a combinatorial optimization problem-

Arbitrage Problem

find a closed path that maximizes the profit

Cost function

$$Profit = \prod_{i,j \in path} r_{i,j}$$

Constraint

Must be a closed path

Requirement

find more profitable paths in a shorter time

Problem formulation: QUBO (Quadratic Unconstrained Binary Optimization)

QUBO formulation of the arbitrage problem

For each edge,

Decision variable $b_{i,j}$

Exchange rate $r_{i,j}$

Cost function

Cost function (linear)

(high-order polynomial)

$$C' = \prod r_{i,j}^{b_{i,j}} - w_{i,j} = -\log r_{i,j} \longrightarrow C = \sum w_{i,j} b_{i,j}$$

Penalty function (quadratic)

$$P = \sum_{i} \sum_{j \neq j'} b_{i,j} \ b_{i,j'} \ + \sum_{j} \sum_{i \neq i'} b_{i,j} \ b_{i',j} \ + \sum_{i} \left(\sum_{j} b_{i,j} - \sum_{j} b_{j,i} \right)^2 + \sum_{i,j} b_{i,j} \ b_{j,i}$$
 outflow < 1 outflow = inflow forbids traversing the same edge twice

Total cost function (quadratic)

$$C_{tot} = m_c C + m_p P$$

Arbitrage problem as a QUBO:

Optimize the bit configuration $\{b_{i,j}\}$ to minimize the quadratic cost function C_{tot} in

System configuration

An end-to-end FPGA-based arbitrage system

①Custom I/F (feed handler)
 captures market feeds
 at unscheduled intervals

2 Exchange rate manager updates an NxN *wij* matrix, outputs all weights in a single clock

3SB accelerator searches for an optimal path from all possible paths

4 Trading engine prepares order packets

- **SCustom I/F (line handler)** issues the order packets

Demonstration: How it works

The system's responses to real market situation on January 2nd, 2019

Performance: Response time & Accuracy

<30us System Latency & 91% Top-1 Probability

Response time

10 milliseconds 1.0014 System-wide response time: 27.5us (on average over 1000 packets) 1.0012 1.0010 Rate 1.0008 Profit 1.0006 1.0004 1.0002 1.0000 9 10 Time [$x10^{-3}$ sec]

Solution accuracy

In the one-month data, 34,471,865 distinct events, 21.3% (7,355,698) were profitable (at least one path with a profit rate >1.0)

To facilitate the development of innovative real-time systems for everyone

On-premises ver. of simulated bifurcation machineTM (Mar., 2021)

A look-aside FPGA accelerator for SB C/Python APIs for software engineers

Reference designs of real-time applications

a user-interactive interface for solving the travelling salesman problem

multi-object tracking by solving the maximum matching problem stream data processing of market graph for finding the diversified portfolio through solving the maximumindependent-set problem

Contents

- Introduction:
- O1 Combinatorial optimization in real-time systems
- 02 Simulated bifurcation (SB)
- 03 Real-time systems that make optimal responses
- O4 Scaling out Ising machines

Enlarging machine size & enhancing processing speeds -Enlarging machine size while keeping computational efficiency-

Single-FPGA accelerator for SB*1

of PEs: 8,192 Effective activity factor: 92% Sufficient data supply to PEs Peak rate: 4,678GB/s

On-chip memory/wiring resources

FPGA MMTE

The machine size is limited by on-chip memory

Single-FPGA arbitrage machine*2

Maximum market graph: Fully-connected 16-asset problems (16 nodes, 256 directed edges)

What can we do if we want to take more assets into account?

Increasing computing performance and scale

Two approaches: scale-up and scale-out

Scale-up

making a chip larger (denser)

Pros. Reactively easy to enhance the performance Cons. Need to develop a manufacturing technology

increasing the number of networked chips

Pros. Enables continued enlargement of the computing scale Cons. Need to develop a cluster architecture to avoid performance saturation due to communication overhead

Partitioning spin networks with local-/full-connectivity

Locally-connected network

More practical value, but more difficult to partition

Issues: Spin-spin couplings over the subsystems must be incorporated Partitioned subsystems also have to evolve in a single time domain →Communication and synchronization can easily degrade the speed performance.

Scaling out Ising machine with full connectivity

A multi-chip architecture for SB that enables continued scaling of both machine size and computational throughput

Bidirectional ring-network cluster without any centralized features

Autonomous synchronization mechanism (No clock-sharing, No central-HUB)

nature electronics

 P_{chip} =8

All chips are

Time

Demonstration: Scaling out characteristics

Constant-efficiency scaling at the maximized computation parallelism

Demonstration: the throughput enhancement to the vicinity of an ideal upper limit determined by *N* and communication technology

Demonstration: the constant-efficiency scaling at the maximized computation parallelism (at the strong scaling limit)

A multi-chip architecture for simulated bifurcation

Partitioned SB algorithm that can be executed simultaneously on multiple chips

Each chip (spin subsystem) is responsible for $N/P_{\rm chip}$ spins Each chip needs all the spin information to update the $N/P_{\rm chip}$ spins (all-to-all connectivity)

Communication phase

- -Share all the spin information
- -Repeating exchange processes of spins btw neighboring chips

Computation phase -compute the time-evolved state in a chip-parallel fashion

A multi-chip architecture for simulated bifurcation

Autonomous synchronization mechanism

Autonomous synchronization mechanism

Global synchronization without a centralized control node (a chokepoint)

→ Good scalability of the processing speed

Conclusions

FPGA-based accelerators for simulated bifurcation that enables large-scale combinatorial optimization in real-time systems

Simulated bifurcation (SB):

a quantum-inspired algorithm having plentiful parallelism

FPGA-based accelerators for SB:

massively-parallel, fully-customized circuit architecture very practical (no refrigerator, no laser, but in FPGA) can be scaled out with an autonomously-synchronizable multi-chip architecture

Real-time systems that make optimal responses

an example: an end-to-end cross-currency arbitrage system with <30us system latency & 91% top-1 probability

Future outlook

Toward creating various innovative real-time systems

[On-going] Testing high-frequency trading systems using SB accelerators in the Tokyo stock exchange

[Future] High-speed dynamic pricing systems applicable to virtual power plant

https://www.global.toshiba/ww/technology/corporate/rdc/rd/topics/21/2105-01.html

https://www.toshiba-clip.com/en/detail/p=228

References: Simulated Bifurcation MachineTM

[Official web site]

Simulated Bifurcation Machine™

https://www.toshiba-sol.co.jp/en/pro/sbm/index.htm

[Journal papers/Peer-reviewed conference papers/Toshiba's Press Release]

[1] The story of the birth of simulated bifurcation machine $^{\text{TM}}$

https://www.toshiba-clip.com/en/detail/p=76

[2] 1st Announcement of simulated bifurcation machine™

H. Goto *et al.*, "Combinatorial optimization by simulating adiabatic bifurcations in nonlinear Hamiltonian systems", *Science Advances* **5**, eaav2372 (2019).

https://doi.org/10.1126/sciadv.aav2372

Toshiba's Breakthrough Algorithm Realizes World's Fastest, Largest-scale Combinatorial Optimization https://www.toshiba.co.jp/rdc/rd/detail-e/e1904_01.html

[3] 2-gen simulated bifurcation machine™

H. Goto *et al.*, "High-performance combinatorial optimization based on classical mechanics", *Science Advances* **7**, eabe7953 (2021).

https://doi.org//10.1126/sciadv.abe7953

Toshiba's New Algorithms Quickly Deliver Highly Accurate Solutions to Complex Problems https://www.toshiba.co.jp/rdc/rd/detail_e/e2102_01.html

[4] Custom accelerator

K. Tatsumura *et al.*, "FPGA-Based Simulated Bifurcation Machine", *IEEE Int'l Conf. on Field-Programmable Logic and Applications* (FPL), 59-66 (2019).

https://doi.org/10.1109/FPL.2019.00019

Toshiba Develops a Dedicated Massively Parallel Processing Circuit for Simulated Bifurcation Algorithms https://www.toshiba.co.jp/rdc/rd/detail-e/e1909-03.html

[5] PoC for ultra-fast financial transaction machine

K. Tatsumura *et al.*, "A Currency Arbitrage Machine Based on the Simulated Bifurcation Algorithm for Ultrafast Detection of Optimal Opportunity", *IEEE Int'l Symp. on Circuits and Systems* (ISCAS), 1-5 (2020). https://doi.org/10.1109/ISCAS45731.2020.9181114
M. Yamasaki *et al.*, "Live Demonstration: Capturing Short-Lived Currency Arbitrage Opportunities with a Simulated Bifurcation Algorithm-Based Trading System", *IEEE Int'l Symp. on Circuits and Systems* (ISCAS), 1-1 (2020).

https://doi.org/10.1109/ISCAS45731.2020.9180679

Toshiba Develops Proof-of-concept Device for Ultra-high-speed Financial Transaction Machine with Simulated Bifurcation Algorithm

https://www.toshiba.co.jp/rdc/rd/detail_e/e1910_02.html

[6] Scaling out Ising machines

K. Tatsumura *et al.*, "Scaling-out Ising machines using a multi-chip architecture for simulated bifurcation", *Nature Electronics* **4**, 208–217 (2021).

https://doi.org/10.1038/s41928-021-00546-4

Also see BEHIND THE PAPER: https://go.nature.com/2MuGe21

Cutting-edge Scale-Out Technology from Toshiba will Take Fintech and Logistics to New Level https://www.toshiba.co.jp/rdc/rd/detail e/e2103 01.html

[7] On-premises version of Simulated Bifurcation Machine™
Toshiba Offers On-premises Simulated Bifurcation Machine™ for Market Trials in Japan https://www.global.toshiba/ww/technology/corporate/rdc/rd/topics/21/2103-03.html

[8] Testing SB-based financial transaction machines in the Tokyo stock exchange Toshiba and Dharma Capital's Joint Experiment in Financial Markets to Verify the Effectiveness of a Quasi-Quantum Computer When Applied to High Frequency Trading https://www.global.toshiba/ww/technology/corporate/rdc/rd/topics/21/2105-01.html

[9] Real-time systems that make optimal responses

K. Tatsumura *et al.*, "Large-scale combinatorial optimization in real-time systems by FPGA-based accelerators for simulated bifurcation", *ACM Int'l Symp. on Highly Efficient Accelerators and Reconfigurable Technologies* (HEART), 1-6 (2021).

https://doi.org/10.1145/3468044.3468045

[News Media]

[1] IEEE Spectrum (Dec, '19)

Toshiba's Optimization Algorithm Sets Speed Record for Solving Combinatorial Problems https://spectrum.ieee.org/tech-talk/computing/software/toshiba--optimization-algorithm-speed-record-combinatorial-problems#.XkHhXCOP1GQ.email

[2]Analytics India Magazine (Dec, '19)
Top 5 Algorithm Breakthroughs In 2019
https://analyticsindiamag.com/top-5-algorithm-breakthroughs-in-2019/

[3] COMMUNICATIONs of the ACM (May, '21) Quantum Simulator Beats Quantum Hardware

https://cacm.acm.org/news/252584-quantum-simulator-beats-quantum-hardware/fulltext

[4] Risk.net (Jun, '21) Quantum kit offers HFTs '100-fold' speed boost

© 2021 Toshiba Corporation