
 

 

 

 
 
 
 
 
 

Building Log Solutions with GridDB 
 

March 20, 2018 
Revision 0.05 

  



2 

Table of Contents 
 
Table of Contents 2	
List of Figures 2	
Executive Summary 3	
Introduction 3	
Data Sources 4	
Containers 4	
Queries 5	
Time Series Data 6	
Alerts 7	
Visualization 8	
Performance 8	
Conclusion 10	

 
 

List of Figures 
 
Figure 1: Log Agent Access Methods 4	

Figure 2: GridDB Containers 5	

Figure 3: GridDB Multi Query 6	

Figure 4: Trigger Functionality 7	

Figure 5: Grafana Screenshot 8	

Figure 6: Write Performance Comparison 9	

Figure 7: Read Performance Comparison 9	

  



3 

Executive Summary 
 
As applications have scaled to handle millions of requests per day, the underlying 
infrastructure required to monitor those applications has also needed to scale. With many 
options available to collect, store, analyse, and visualize log data, this white paper 
demonstrates how to effectively use the GridDB database to build logging solutions. 
 
 

Introduction 
 
GridDB is an innovative, high performance NoSQL database developed by Toshiba Digital 
Solutions Corporation whose characteristics make it ideal for storing log data. This 
whitepaper aims to demonstrate how to build log solutions using GridDB, going from 
collection to visualization. 
 
Log solutions can store, visualize, and report many different types of application specific 
data. These logs may include system resource utilization (such as CPU, Memory, or Disk 
usage percentage), application profiling data (to determine what parts of application use 
more system resources) or application events such a history of what web pages were 
accessed or of errors that occurred.  
 
A particular log solution is built of several components, first the log agent that reads or 
generates the metric that is then stored in the data store, in this case GridDB. The reporting 
mechanism either generates reports that may be used by some other business process 
within the organization or the visualization software builds easy to understand graphs, 
tables, or other visual representations of the log data. When required, the Log solutions 
alerting system can create tickets in an organization’s issue tracker or notify system 
administrators that a problem has occurred via SMS, email or other means.   
 
This white paper looks at how GridDB can be used with each component that may be 
required in a log solution, generating reports with simple and easy-to-use queries, log data 
can be visualized with Grafana. Built-in trigger functions enable GridDB to integrate with 
existing ticketing or issue tracking systems to make sysadmins aware of any issues.  
 
Beyond the system components, both GridDB’s unique Key-Container architecture and 
native Time Series data support will be examined to show how GridDB’s core architecture is 
ideal for storing both small and large amounts of log data.  
 
 
 



4 

Data Sources 
 
Log data can come from many sources, including: system calls that return information about 
the system, parsing application log files, or by the application itself directly inserting data into 
the database. These values are called metrics.  
 
The agent -- or software that processes the data -- sources and either inserts the metrics 
directly into GridDB or pushes them further into the log-gathering pipeline.   
 
The scope, scale, and system architecture of the application whose metrics are being logged 
will determine if the agent will directly insert the data into the database or push them into a 
log-gathering pipeline.  
 

 
Figure 1: Log Agent Access Methods 

 
One common method for building an Internet-scale log pipeline is to send the logged metrics 
encapsulated in Message Pack or JSON over MQTT to Kafka. From there, the metrics can 
be ingested into GridDB. 

Containers 
 
One of the most interesting features of GridDB is its Key-Container architecture (as 
compared to Key-Column [SQL, Cassandra], Key-Document [MongoDB], or Key-Value 



5 

[Redis]). The Key-Container model gives the developer the flexibility to structure their data in 
a myriad of different ways, allowing the ability to enable the most efficient way for querying. 
 

 
Figure 2: GridDB Containers 

 
For example, if you were interested in measuring memory usage between hosts, you would 
use one container per host, but if you were interested in measuring how long a request takes 
for different functions, a developer would use one container per function. 
 

Queries 
 
To build useful reports, a strong query language is required that is able to collect minimum, 
maximums, averages, and other statistical information about the metrics collected. GridDB 
uses the TQL query language which is easily understandable and familiar to anyone who 
has worked with SQL. 
 

SELECT * WHERE timestamp > TIMESTAMP('2011-01-01T00:00:00Z') ORDER BY 
timestamp LIMIT 100 

 
Developers can use several aggregation functions that can calculate the MIN, MAX, AVG, 
SUM, COUNT, VARIANCE, and STDDEV of a column in a given query. 
 
Instead of executing multiple queries to a container, a consolidated query can be executed 
once to fetch multiple aggregates of the logged metric. This is useful for acquiring aggregate 
results such as the daily minimum, maximum, and average values of a particular metric.  
 



6 

 
Figure 3: GridDB Multi Query 

 

Time Series Data 
 
As system metrics are taken at a given time and events happen at a specific time, log data is 
inherently TimeSeries data with timestamps attached to all rows. GridDB was designed with 
TimeSeries data in mind and packs several features that assist in building log solutions. 
 
The TIME_SAMPLING function is useful for data where events are stored at a high-
frequency but the particular query only requires low frequency data. For example, data is 
stored at one second intervals but only a sampling at ten-minute intervals is required for a 
particular query. 
 

SELECT TIME_SAMPLING(voltage103, TIMESTAMP('2011-07-01T00:00:00Z'), 
TIMESTAMP('2011-07-02T00:00:00Z'), 10, MINUTE) 

 
The TIME_AVG function provides a convenient method for calculating the time weighted 
averages of a column even if the intervals between records are irregular.  
 
 



7 

SELECT TIME_AVG(voltage103) FROM plant1 
  WHERE TIMESTAMP('2018-07-01T00:00:00Z') <= timestamp 
  AND timestamp < TIMESTAMP('2018-08-01T00:00:00Z') 

 
 
GridDB has two features that will help lower the amount of storage required for Time Series, 
the first is Time Series compression, which can reduce storage required by up to 300%. With 
the automatic expiration function, Time Series data can be automatically removed from the 
database when it reaches a certain age using following function: 
 
 

TimeSeriesProperties().setRowExpiration(int elapsedTime, TimeUnit 
timeUnit) 

 
 

Alerts 
 
The ability for the database to trigger Alerts is important within a Log Solution to notify 
system administrators of potential problems such as a server’s disk filling up, repeated 
unsuccessful login attempts, or long request times.  
 
You can create alerts using GridDB’s trigger function. This will send an automatic notification 
using either Java Messaging Service (JMS) or a REST API call when an operation 
(add/update or delete) is carried out on the row data of a container that matches the given 
set of conditions. Event notifications can be received without the need to poll and monitor 
database updates in the application system. 

 

 

Figure 4: Trigger Functionality 



8 

 
Multiple triggers can be set in a single container and additionally, when a trigger occurs, the 
application can also be notified of the data that triggered the alert.  
 

Visualization 
While there are a multitude of different ways to visualize data in GridDB, using Grafana has 
the best support and two different methods of accessibility available; the GridDB Grafana 
plugin which uses the GridDB WebAPI or a custom connector that implements the API 
endpoints required by SimpleJSON datasource plugin and allows customized queries to be 
performed.  
 

 
Figure 5: Grafana Screenshot 

 
The GridDB Grafana plugin is best used when simply displaying metrics while building and 
using GridDB Grafana JSON connector is useful when more complex querying is required 
such as when building a dashboard of response times for certain conditions.  
 

Performance 
 
When building a log solution, often the computational cost of the log framework is just as 
intensive as the application it is monitoring. GridDB features a hybrid in-memory 
architecture, parallel query processing and minimal overhead that produces incredible 
performance.  
 



9 

As Fixstars has demonstrated in previous benchmarks against other databases such as 
Cassandra, InfluxDB, and MariaDB (MySQL), GridDB’s higher performance means it 
requires a fraction of the resources as its competitors.  
 
 

 
Figure 6: Write Performance Comparison 

 
The above and below graphs represent the relative performance of GridDB and Cassandra, 
InfluxDB, and MariaDB using their specific test workload. For benchmarking Cassandra, the 
comparison1 is using YCSB Insert and Workload B, while the InfluxDB benchmark2 used 
YCSB-TS’s Insert and Workload A and the MariaDB comparison3 used an in-house 
developed workload that mimicked a common transactional insert with aggregation queries. 
All of the shown benchmarks are using one database system and one application system.  
 

 
Figure 7: Read Performance Comparison 

                                                
1 https://griddb.net/en/docs/Fixstars_NoSQL_Benchmarks.pdf 
2 https://griddb.net/en/docs/TimeSeries_Database_Benchmark_GridDB_InfluxDB.pdf 
3 https://griddb.net/en/docs/Benchmarking_Application_GridDB_MariaDB.pdf 

0%

20%

40%

60%

80%

100%

120%

GridDB Cassandra Influx MariaDB

Normalized	Database	Insert	Performance	

0%

20%

40%

60%

80%

100%

120%

GridDB Cassandra Influx MariaDB

Normalized	Database	Read	Performance



10 

 

Conclusion 
 
As this whitepaper demonstrates, GridDB is well suited to building a Log Solution with 
extremely high performance. The upgraded performance brought on by GridDB allows for 
reduced operational costs and also a combination of features and capabilities that enable 
integration with other system components, which includes, most notably, integration with the 
very popular visualization tool Grafana. 
 
 


