
	 1	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

Building	IoT	Applications	with	GridDB	
September	28,	2017	

Revision	1.0	
	 	



	 2	

Table	Of	Contents	
	
1	 Executive	Summary	...................................................................................................................................	3	
2	 Introduction	..................................................................................................................................................	3	
3	 IoT	Infrastructure	.......................................................................................................................................	4	
3.1	 Sensors	and	Actuators	......................................................................................................................	4	
3.2	 Communication	...................................................................................................................................	4	
3.3	 Analytics	.................................................................................................................................................	5	
3.4	 Edge	Computing	..................................................................................................................................	5	
3.5	 Gateway	Aggregation	........................................................................................................................	5	
3.6	 Direct	Connectivity	............................................................................................................................	6	

4	 IoT	Data	...........................................................................................................................................................	7	
4.1	 Record	Size	and	Count	......................................................................................................................	7	
4.2	 Database	Growth	................................................................................................................................	8	
4.3	 Continuous	Data	..................................................................................................................................	8	
4.4	 Various	Data	Types	.........................................................................................................................	10	
4.5	 Real	Time	Processing	.....................................................................................................................	11	
4.6	 Batch	Processing	..............................................................................................................................	12	
4.7	 Ad-hoc	User	Queries	.......................................................................................................................	13	

5	 Use	Cases	.....................................................................................................................................................	14	
6	 Conclusion	...................................................................................................................................................	15	
	
	
List	of	Figures	
	
Figure	1:	Visualization	of	IoT	Models	........................................................................................................	4	
Figure	2:	Difference	in	Scalability	between	GridDB	and	Cassandra	.............................................	7	
Figure	3:	GridDB	and	Cassandra	Performance	Over	Time	...............................................................	8	
Figure	4:	Autonomous	Data	Distribution	Algorithm	...........................................................................	9	
Figure	5	TimeSeries	and	Collection	Containers	.................................................................................	10	
Figure	6:	GridDB	as	part	of	a	MapReduce	Application.	...................................................................	12	
Figure	7:	GridDB	Solution	to	process	Smart	Meter	data.	...............................................................	14	
	 	



	 3	

1 Executive	Summary	
	
This	white	paper	showcases	the	requirements	of	IoT	(Internet	of	Things)	databases	by	
examining	the	architectures	of	IoT	solutions	and	how	the	data	is	generated,	transferred,	
and	used	after	it	has	been	collected.		Finally,	it	demonstrates	how	GridDB	is	specifically	
tailored	for	these	different	scenarios	and	can	ease	both	initial	development	and	on	going	
maintenance.		

2 Introduction	
	
It	is	estimated	that	by	2020,	there	will	be	50	billion	devices	connected	to	the	internet	1.	
All	these	devices	will	be	connected	to	the	cloud,	each	other,	and	to	different	services.	
This	will	create	a	new	dynamic	and	global	infrastructure	known	as	the	“Internet	of	
Things.”	This	infrastructure	will	completely	transform	how	individuals	and	
organizations	connect	to	each	other.			
	
Comprehensive	data	management	is	key	for	many	IoT	applications	as	many	decisions	
and	services	are	based	on	the	various	ways	to	combine	both	real-time	and	historical,	
stored	data.	One	major	component	to	consider	in	designing	an	IoT	data	management	
framework	is	choosing	its	database.	IoT	databases	have	a	much	different	set	of	
requirements	when	compared	to	the	enterprise	systems	of	the	past.		
	
Toshiba’s	NoSQL	database	GridDB	was	originally	designed	for	IoT	workloads	and	
provides	the	performance,	flexibility,	reliability,	and	support	needed	for	such	
applications.	GridDB	is	a	scale-out,	partitioned	database	that	features	include	in-
memory	storage	and	processing	for	high	performance	and	scalability.	It	has	a	flexible	
key-container	data	model	that	can	be	easily	adapted	for	use	for	a	variety	of	different	
data	types.	Its	use	of	partitioning	and	a	hybrid	cluster	management	architecture	
provides	high	availability	with	reliability.	It	also	provides	wide	support	of	popular	
programming	languages	and	third-party	software	packages	to	make	analyzing	data	and	
building	applications	easier.	
	 	

																																																								
1	https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/iot-platform-reference-architecture-paper.pdf	



	 4	

3 IoT	Infrastructure	
	
To	understand	IoT	data,	first	we	should	understand	the	physical	components	in	an	IoT	
solution	and	how	they’re	used.		

Figure	1:	Visualization	of	IoT	Models	

3.1 Sensors	and	Actuators	
	
Sensors	can	be	defined	broadly	as	devices	that	provide	inputs	about	its	current	state	
while	actuators	are	devices	that	are	used	to	make	changes	in	the	environment.	IoT	
devices	can	range	from	small	inexpensive	microcontrollers	to	expensive	industrial	
machinery.		There	are	thousands	if	not	millions	of	sensors	in	a	typical	IoT	platform	each	
generating	data	on	a	regular	interval.	
	

3.2 Communication	
	
The	communication	component	of	an	IoT	application	transfers	all	the	data	between	the	
sensors,	gateways,	and	data	center	or	cloud.	The	components	that	are	connected	to	each	
other	and	how	they	are	connected	can	differ.	One	model	involves	connecting	sensor	
devices	directly	to	each	other	for	communication.	The	cloud-to-device	model	has	the	IoT	
device	connected	directly	to	a	cloud	service	or	private	data	center	to	allow	for	services	
like	remote	access.	The	gateway-to-device	model	connects	sensor	devices	to	an	
intermediary	device	known	as	a	gateway.	The	gateway	can	add	extra	interoperability	
between	cloud	services	and	IoT	devices.			
	
	
	
	



	 5	

3.3 Analytics	
	
The	intelligence	component	of	an	IoT	application	is	the	portion	that	stores,	analyzes,	and	
process	vast	amounts	of	data.	It	consists	of	various	technologies	and	frameworks	such	as	
databases	and	data	processing	frameworks	and	utilizes	cloud	computing.	The	
operations	of	data	processing	usually	consist	of	aggregation,	analysis,	and	storage.	
	
IoT	applications	can	be	deployed	in	a	variety	of	different	ways	for	various	domains.	The	
layouts	can	focus	on	certain	layers	or	endpoints	of	the	application.	Different	layouts	and	
architectures	have	different	requirements.	The	various	IoT	application	structures	also	
differ	in	their	size,	scope,	and	the	number	of	domains	that	they	encompass.	The	primary	
structures	of	an	IoT	system	are	Edge	Computing,	Gateway	Aggregation,	and	Direct	
Connectivity.	

3.4 Edge	Computing		
	
The	edge	is	the	location	where	all	event	data	and	automated	action	takes	place.	In	edge	
computing,	there	are	three	device	types:	the	edge	gateway,	the	edge	device,	and	the	
actual	edge	sensor2.	Edge	devices	can	be	thought	of	as	general-purpose	devices	with	full	
operating	systems	and	processors.	These	devices	do	not	require	internet	connectivity	
and	can	perform	analysis	and	feedback	on	their	own.	Their	usefulness	come	into	play	
when	the	data	volume	is	so	large	that	a	central	server	cannot	handle	all	the	data	at	once.	
They	are	also	useful	to	make	data	processing	as	close	to	real-time	as	possible.	The	edge	
gateway	has	a	full	operating	system	with	higher	computing	resources	than	the	edge	
device.	The	gateway	acts	as	the	intermediary	between	the	central	server	and	the	edge	
device.	
	
An	Edge	Computing	IoT	device	will	process	or	filter	its	data	before	propagating	the	
portion	to	be	stored	to	the	GridDB	database.	That	data	can	be	propagated	either	using	
GridDB’s	native	APIs	or	via	some	other	messaging	framework	such	as	MQTT.	

3.5 Gateway	Aggregation		
	
An	intermediary	gateway	collects	information	from	a	set	of	local	sensors	and	then	
aggregates	their	data	before	sending	it	to	a	central	server.	Gateway	devices	are	useful	
for	bridging	different	network	types	and	are	typically	used	in	tightly	coupled	systems,	
for	example	all	the	sensors	within	a	building	would	communicate	with	the	building’s	
gateway	which	would	send	the	data	to	the	centralized	server	that	receives	data	from	
multiple	gateways.	
	
A	gateway	device	can	either	directly	connect	to	a	GridDB	cluster	using	native	APIs	or	it	
can	send	data	via	a	secondary	messaging	protocol	to	the	datacenter	or	cloud	where	the	
data	would	be	ingested.		
	
	
	

																																																								
2	https://www.ibm.com/blogs/internet-of-things/edge-iot-analytics/	



	 6	

3.6 Direct	Connectivity	
	
IoT	sensors	and	devices	can	directly	send	their	data	to	the	cloud	or	centralized	servers.	
The	centralized	infrastructure	can	exchange	data	and	control	message	traffic.3	This	style	
of	communication	is	useful	for	loosely	coupled	systems	like	a	network	of	smart	meters.	
The	devices	can	either	directly	connect	to	GridDB	via	its	API	or	messages	can	be	sent	via	
an	application	gateway	in	the	centralized	infrastructure.	
	 	

																																																								
3	http://www.thewhir.com/web-hosting-news/the-four-internet-of-things-connectivity-models-
explained	



	 7	

4 IoT	Data	
	
Raw	IoT	data	is	unique	in	that	it	is	typically	machine-to-machine	data	that	is	generated	
continuously	while	being	never	directly	used	by	a	human.	Its	unique	characteristics	
prioritize	transaction	count	over	raw	data	size	while	read	performance	and	high-speed	
search	are	important	to	transform	data	into	something	useful	via	real	time	processing,	
batch	jobs,	or	ad-hoc	queries.		

4.1 Record	Size	and	Count	
	
Typically,	the	records	created	by	an	IoT	device	are	quite	small,	generally	being	only	a	
few	bytes	in	length,	but	are	generated	frequently	and	by	a	large	number	of	devices.	A	
few	bytes	per	record	quickly	become	a	terabyte	--	or	even	petabyte	--	level	problem	
requiring	both	a	huge	amount	of	storage	and	incredibly	fast	per	transaction	times.	
	
To	solve	this	issue,	GridDB	uses	both	in-memory	and	persistent	storage.	A	singular	
transaction	can	be	completed	in	memory	very	quickly	and	then	grouped	together	over	a	
defined	period	to	be	written	to	disk	as	one	batch.		
	
It	aims	to	keep	most	or	all	its	data	in-memory,	using	checkpoint	intervals	to	flush	its	
internal	memory	structure	back	to	disk.	Affinity	functions	make	effective	use	and	
operation	of	limited	memory	areas	in	a	database.	
	
GridDB	provides	the	high	performance	and	scalability	required	by	IoT	applications	
through	horizontal	scalability.	Using	a	memory	first	architecture	helps	to	maximize	
performance	when	ingesting	and	processing	large	amounts	of	data.	GridDB’s	approach	
to	scale-out	support	for	adding	additional	nodes	online	give	IoT	applications	the	needed	
horizontal	scalability.	These	features	are	further	demonstrated	in	a	YSCB	benchmark	
test	against	Apache	Cassandra.	
	

Figure	2:	Difference	in	Scalability	between	GridDB	and	Cassandra	

	



	 8	

	

4.2 Database	Growth	
	
When	an	IoT	platform	first	goes	online,	there	is	typically	just	a	subset	of	sensors	and	
data	that	it	will	have	at	full	maturity.	As	the	number	of	sensors	and	amount	of	data	
increases,	the	database	must	also	grow,	or	scale.	GridDB	uses	multiple	nodes	to	provide	
scalability.	
	
As	the	data	set	grows,	additional	nodes	can	be	added	to	increase	both	database	
performance	and	increase	the	total	amount	of	storage	available.	With	GridDB	Standard	
Edition,	new	nodes	can	be	added	without	interruption	while	the	cluster	is	online.	
	
In	a	series	of	benchmark4	tests	performed	by	Fixstars,	GridDB	outperformed	Apache	
Cassandra	over	the	entire	series	of	tests.	The	benchmarks	used	the	YCSB	on	1,	8,	16,	and	
32-node	database	clusters	utilizing	the	Microsoft	Azure	Cloud	Platform.	GridDB	showed	
that	it	scaled	significantly	better	than	Cassandra	when	new	nodes	were	added.		
	

4.3 Continuous	Data	
	
IoT	sensors	generate	data	24	hours	a	day,	365	days	per	year.	Downtime	for	either	failure	
or	maintenance	is	not	an	option	like	it	is	in	applications	that	only	require	availability	
during	business	hours.	After	years	of	operation	and	trillions	of	transactions	the	database	
must	remain	as	fast	as	it	was	immediately	after	installation.	
	
To	demonstrate	how	GridDB’s	architecture	is	best	for	workloads	that	cannot	have	
interruption,	Fixstars	performed	a	24-hour	time-trial	with	GridDB	and	Cassandra	that	
shows	how	GridDB	is	able	to	operate	for	extended	periods	with	an	update-intensive	
workload	without	maintenance	unlike	Cassandra	and	other	log-sorted	that	require	
compaction	and	other	maintenance.	

Figure	3:	GridDB	and	Cassandra	Performance	Over	Time 

	
																																																								
4	https://www.griddb.net/en/docs/Fixstars_NoSQL_Benchmarks.pdf	



	 9	

	
The	continuous	ingestion	of	data	also	means	that	a	database	must	be	highly	available	
and	reliable	which	is	accomplished	through	data	replication	on	multiple	nodes	and	fault	
tolerant	algorithms	to	handle	failover.	
	
Distributed	systems	like	GridDB	systems	typically	use	either	a	Master-Slave	architecture	
or	a	Peer-to-Peer	architecture	for	managing	their	nodes.	The	“Master”	in	a	Master-Slave	
distributed	system	is	typically	a	single	point	of	failure	and	peer-to-peer	systems,	all	
nodes	are	identical	but	will	incur	some	communication	overhead	to	provide	consistency.	
GridDB	is	a	hybrid,	any	node	is	capable	of	being	the	master	and	in	the	event	of	a	master-
node	failure,	one	of	the	followers	will	take	over	ensuring	continuous	service.		
	

Figure	4:	Autonomous	Data	Distribution	Algorithm	

	
In	the	event	of	a	failure,	the	Autonomous	Data	Distribution	Algorithm	(ADDA)	will	re-
assign	owner	or	backup	roles	for	a	partition	and	instruct	the	new	nodes	to	begin	
synchronization.		
	
GridDB	uses	a	hybrid	architecture	for	cluster	management.	An	algorithm	is	used	to	
determine	the	master	node	and	in	the	case	of	the	master	failing,	a	bully	algorithm	is	run	
again	to	determine	the	new	master	node.	Without	being	able	to	failover	the	master,	the	
master	becomes	a	single-point-of-failure	(SPOF).	This	allows	for	GridDB	to	retain	high	
reliability	and	the	higher	performance	associated	with	master/slave	architectures	
versus	peer-to-peer	architectures.		
	
GridDB	can	be	configured	for	either	immediate	or	eventual	consistency.	With	immediate	
consistency,	the	partition	owner	handles	all	read	and	write	requests	and	propagates	
them	to	the	backup	nodes.	In	eventual	consistency,	replicas	can	respond	to	read	
requests.			
	 	



	 10	

4.4 Various	Data	Types	
	
Applications	regarding	traffic,	climate,	and	many	other	domains	need	reliable,	constant	
sources	of	many	different	types	of	data	including	geospatial	and	temporal	data	to	be	
effective.	Many	data	objects	used	in	IoT	applications	have	spatial	characteristics	in	
multiple	dimensions	thus	databases	used	for	IoT	applications	should	efficiently	handle	
containers,	schemas,	and	indexing	of	both	temporal	and	spatial	characteristics.		
	
GridDB’s	key-container	model	of	data	allows	for	easy	usage	of	varying	types	of	data.	The	
containers	can	use	any	key	or	a	timestamp	that	allows	for	easier	processing	of	temporal	
data.	GridDB	has	built-in	aggregation	and	geometry	functions	that	enable	developers	to	
easily	build	queries	without	having	to	build	their	own	complex	routines	to	perform	the	
same	functions.		
	

Figure	5	TimeSeries	and	Collection	Containers	

		
Containers	can	either	be	a	Collection	or	a	TimeSeries;	a	collection	can	use	any	type	of	
data	for	a	key	while	a	TimeSeries	Container	uses	a	time	stamp	for	a	key.		
	
TimeSeries	Containers	allow	for	special	time	functions	in	dealing	with	time-stamped	
data.	Timestamps	can	be	used	to	delete	certain	data	after	a	set	amount	of	time	has	
passed.	TimeSeries	containers	also	support	compression	allowing	more	efficient	storage	
of	archived	data.			
	
GridDB’s	time-specific	queries	and	functions	include	time-weighted	averages	as	well	as	
the	ability	to	perform	linear	interpolation	to	estimate	data	values.	There	is	also	the	
ability	to	set	consistent	sampling	periods	setting	start	and	end	times	and	a	set	time	
interval	between	returned	values.	
	
Time	Query	Example:	
	

SELECT TIME_SAMPLING(voltage103, TIMESTAMP('2011-07-
01T00:00:00Z'), TIMESTAMP('2011-07-02T00:00:00Z'), 1, 
HOUR) FROM plant1 

	



	 11	

GridDB	SE	(Standard	Edition)	and	above	can	support	spatial	data	as	column	types	for	its	
containers	along	with	geometric	queries.	For	Geometric	data,	objects	can	be	created	
through	the	C	and	Java	APIs	or	through	TQL	queries.	GridDB	accepts	objects	in	WKT	
(well-known-text	)	form	and	supports	objects	like	POINT,	POLYGON,	LINESTRING,	
POLYHEDRALSURFACE,	and	QUADRICSURFACE.	GridDB	also	offers	the	use	of	several	
ST_	functions	in	TQL	queries	like	intersections	to	be	performed	on	Geometric	data.		
	
Creating	a	Geometry	Object	with	the	Java	API:	
	

Geometry coordinate = Geometry.valueOf(“POINT(33.651442 -
117.744744)”);	

	
Geometry	objects	can	be	created	with	TQL	through	ST_GeomFromText	function.	Other	
objects	such	as	rectangles,	planes,	spheres,	cones,	and	cylinders	can	also	be	created	with	
TQL.	GIS	functions	such	as	generating	SRIDBEs	and	calculating	intersections	between	
geometric	objects	are	also	supported.		
	
The	following	TQL	example	returns	results	with	points	within	the	given	polygon:	
	

SELECT * WHERE ST_MBRIntersects (geom, ST_GeomFromText 
('POLYGON ((0 0,10 0,10 10,0 10,0 0))')) 
	
The	unique	key-container	data	model	used	by	GridDB	has	the	benefit	of	providing	ACID	
characteristics	that	can	be	guaranteed	at	the	container	level.	In	this	model,	a	KEY	can	
represent	one	specific	sensor	out	in	the	field	while	the	VALUE	(CONTAINER)	can	
represent	all	the	data	incoming	from	that	sensor.	The	CONTAINER	mostly	resembles	a	
traditional	relational	table	with	columns	and	rows.	Data	access	uses	the	key	to	narrow	
down	and	find	rows	and	containers.	This	type	of	data	access	allows	temporal,	spatial	
and	other	kinds	of	data	to	be	processed	quickly.	
	

4.5 Real	Time	Processing	
 
IoT	applications	also	require	analysis	while	data	is	being	ingested,	such	as	with	high-
speed	search	and	pattern	recognition.	 
	
Stream	Processing	allows	applications	to	collect,	integrate,	and	visualize	real-time	
stream	data.	This	means	applications	can	process	and	act	on	their	data	as	soon	as	it	is	
produced,	meaning	data	can	be	seen	as	infinite	streams.	These	types	of	queries	allow	
analysis	on	large	amounts	of	data	from	multiple	sources	in	real-time.	This	form	of	
processing	allows	for	businesses	to	adapt	and	conform	to	their	analytical	and	business	
needs	at	a	faster	pace.		
	
In	the	context	of	IoT,	a	well-developed	application	that	utilizes	real-time	stream	
processing	can	solve	many	different	challenges.	TQL	combined	with	Key-Container	
multi-get	queries	can	be	used	to	perform	high-speed	searches	that	will	detect	anomalies	
and	abnormalities	to	provide	quick	responsiveness.	Stream	processing	also	allows	for	
live	monitoring	as	well	as	for	automated	alerts	and	notifications.		
	



	 12	

4.6 Batch	Processing	
	
Batch	processing	is	defined	as	the	processing	of	a	group	or	“batch”	of	transactions	at	
once.	No	user	interaction	should	be	required.	Batch	or	more	transactional	processing	is	
used	to	help	automate	actions	and	decisions	in	IoT	such	as	generating	reports	for	a	
certain	period	like	for	monthly	billing.	
	
Batch	processing	can	be	cheaper	and	more	efficient	than	transactional	processing	and	
allows	businesses	and	organizations	to	carry	out	large	tasks	during	off	the	clock	periods	
where	the	strain	on	resources	is	smaller.		
	
One	of	the	most	popular	frameworks	used	in	batch	processing	is	Apache	Hadoop	which	
has	a	layer	known	as	MapReduce.	MapReduce	is	Hadoop’s	native	batch	processing	
engine.	This	engine	allows	effective	and	inexpensive	processing	of	large	data	sets	when	
time	is	not	a	large	factor.	GridDB	supports	batch	processing	with	a	connector	to	
MapReduce	and	the	Hadoop	File	system.		
	

Figure	6:	GridDB	as	part	of	a	MapReduce	Application.	

	
GridDB	databases	can	be	used	as	input	sources	as	well	as	output	destinations	for	
MapReduce	batch	jobs.	With	GridDB	as	the	storage	engine	and	MapReduce	as	the	
processing	engine,	a	foundation	is	provided	to	process	multiple	workloads	at	a	time	
from	many	different	domains.	This	connector,	when	put	in	combination	with	GridDB’s	
high	performance	from	parallel	and	in-memory	processing,	allow	MapReduce	to	handle	
more	diverse	workloads.	



	 13	

4.7 Ad-hoc	User	Queries	
	
Ad-hoc	or	user	queries	are	created	spontaneously	whenever	the	need	to	get	certain	
information	arises	and	may	involve	adjusting	‘WHERE’	clauses	or	other	location	or	
source	specific	conditions.	For	example,	depending	on	the	choice	a	user	makes	in	a	user-
interface,	it	may	change	what	values	in	the	WHERE	clause	are	set	or	which	containers	
the	database	selects	from.	
	
GridDB	provides	ad-hoc	queries	through	TQL.	TQL	is	a	simplified	version	of	SQL	for	
NoSQL	products.	Ad-hoc	queries	can	be	made	through	a	Query	object	in	GridDB’s	APIs.	
Queries	can	be	generated	simply	by	using	TQL	strings.	These	queries	can	be	generic	
selection	queries	as	well	as	time-specific	aggregations	and	geometry	queries	and	
operations.	Those	strings	contain	the	keywords,	ranges,	options,	and	sources	for	the	
query.	TQL	has	the	benefit	of	being	created	dynamically	and	can	be	adjusted	depending	
on	the	application’s	context.	Once	these	strings	are	made,	the	query	object	is	created	and	
later	fetched.	
	
TQL	Example	(	Java	API	):	
	

Query<Row> query = collection.query(“SELECT * FROM 
sensors WHERE volts = ‘“ + voltage + “‘“); 
	
GridDB	also	has	a	functional	Apache	Spark	with	a	database	connector.	Apache	Spark	is	a	
parallel	data	processing	framework	to	provide	fast	data	analytics.	Using	the	connector	
allows	a	GridDB	database	to	be	used	as	an	input	source	for	Spark	queries	and	analytics.	
Its	interactive	shell	can	be	used	to	quickly	and	easily	perform	ad-hoc	queries	by	data	
scientists	or	developers	or	can	be	built	into	user-facing	business	applications.		
	 	



	 14	

5 Use	Cases	
	
GridDB	has	been	already	implemented	in	several	different	IoT	projects:	
	
An	industrial	manufacturing	company	selected	GridDB	as	their	database	for	their	global	
compressor	management	system.	The	system	provided	cloud	services	to	collect,	store,	
analyze,	and	visualize	data	from	compressors	from	around	the	globe.	Processing	data	at	
this	scale	allows	for	comprehensive	support	and	maintenance	packages	worldwide.	
	
In	2015,	Toshiba	began	offering	the	Building	Energy	Management	Systems	(BEMS)	with	
GridDB	as	its	database.	BEMS	monitors	and	controls	a	building’s	needs,	which	include	
heating,	ventilation,	air	conditioning,	lighting,	and	security.	GridDB	stored	2TB	of	data	
from	hundreds	of	buildings	with	thousands	of	records	being	transacted	each	second.	
		

	

Figure	7:	GridDB	Solution	to	process	Smart	Meter	data.	

	
In	2016,	GridDB	was	used	to	collect	data	from	distributions	of	smart	meters	for	an	
electric	power	company	in	Japan.	The	company	had	a	total	of	3	million	smart	meters.	
Smart	meter	data	would	be	collected	every	30	minutes	and	stored	for	3	months.	This	
resulted	in	a	data	set	over	13	billion	records	totaling	2.6TB.	Thanks	to	the	GridDB’s	fast	
performance	as	well	as	its	support	for	Hadoop	MapReduce	processing,	it	takes	40	
minutes	to	analyze	43.2GB	of	data.	This	rate	improves	performance	by	over	2000	times	
when	compared	to	the	previous	implementation.	
	 	



	 15	

6 Conclusion	
	
GridDB	provides	high	throughput	with	an	in-memory	and	persistent	storage	and	a	fast	
hybrid	master/slave	cluster	management	model.	With	modifiable	containers,	GridDB	
provides	flexibility	that	is	able	to	easily	adapt	as	your	data	changes.	Your	data	is	safe	in	
GridDB	with	its	reliability	and	consistency	features.	GridDB	is	one	of	only	a	few	ACID	-
compliant	NoSQL	databases	and	its	Autonomous	Data	Distribution	Algorithm	(ADDA)	
algorithm	ensures	data	is	efficiently	replicated	in	the	case	of	a	failure.		
	
Meanwhile,	developing	applications	is	easy	with	a	SQL-like	TQL	query	language	and	
native	Java,	Python,	Ruby,	and	C	APIs.	Working	with	real	world	data	is	made	easy	using	
the	geometry	functions	and	TimeSeries	container.	GridDB	also	offers	the	ability	to	
integrate	with	other	open	source	projects	such	as	Kafka,	Hadoop	MapReduce,	Apache	
Spark,	and	KairosDB.		
	
While	selecting	a	database	for	an	IoT	application	depends	on	particular	project	needs,	
GridDB	is	an	ideal	choice	for	most	workloads	because	it	provides	high	performance	
along	with	the	flexibility	and	reliability	required	over	the	lifetime	of	the	project.		


