TOSHIBA

UM-TS03***-E003

PROGRAMMABLE CONTROLLER
PROSEC T3

USER’S MANUAL
- FUNCTION -
(Ver 1.4)

Contents

Toshiba Corporation

Important information

Misuse of this equipment can result in property damage or human injury.
Because controlled system applications vary widely, you should satisfy
yourself as to the acceptability of this equipment for your intended
purpose.

In no event will Toshiba Corporation be responsible or liable for either
indirect or consequential damage or injury that may result from the use of
this equipment.

No patent liability is assumed by Toshiba Corporation with respect to the
use of information, illustrations, circuits, equipment, or examples of
applications in this publication.

Toshiba Corporation reserves the right to make changes and improvement
to this publication and/or related products at any time without notice. No
obligation shall be incurred, except as noted in this publication.

This publication is protected by copyright and contains proprietary
material. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means-electrical, mechanical,
by photocopying, recording or otherwise-without obtaining prior written
permission from Toshiba.

Copyright 1994 by Toshiba Corporation
Tokyo, Japan

Publication number: UM-TS03***-E003
1st edition June 1994

Before reading this manual

FOR SAFETY To use the T3 safely, read this section carefully before use.

1. Only use the T3 after first carefully reading this manual and related
guides.

2. Do not use in any of the following environments, as they will cause
malfunctions:-

(1) Where the ambient temperature of the T3 (the temperature
inside. the panel).is 0 'C or below or 55 C or above

(2) Where the ambient humidity of the T3 (the humidity inside the
panel) is 20% or less or 90% or more

(3) Where condensation may form due to severe changes of
temperature

(4) Where there are vibration or violent shocks

(5) Where there are corrosive gases or flammable gases

(6) Where there is dust, salinity or iron content

(7) Where there is direct sunlight

3. Pa'y attention to the following at the T3 installation site:-

(1) For safety in maintenance and operation, keep a distance of at
least 200mm from high-voltage equipment (high-voltage lines)
and power equipment (power lines), or separate by a shield such
as a steel plate.

(2) Keep the expansion cables separate from other power sources
when wiring. In particular, separate by at least 200 mm from
high-power lines.

(3) Provide an air space of at least 70mm around the units for
ventilation.

(4) Install the units vertically.

4. The T3 power supply module is a dedicated moduie for the T3.
Do not use it for other purposes.

5. For the wiring to the module, use crimp-style terminals fitted with
reverse power sheaths. When it is not possible to use crimp-style
terminals fitted with sheaths, cover with insulating tape and ensure
that the conducting parts are not exposed.

User’s manual - Functions 1

Before reading this manual

This is the warning mark for dangerous locations. It is aftached to
the equipment in positions where there is a risk of electric shock and
in positions where there is a risk of damage to the equipment
through wrong wiring.

Take the following precautions where there is a mark:

(1) Hazardous voitage can shock or cause severe injury if you touch
the power input terminals while power on. Do not touch the
power input terminals.

(2) For safety, always switch off power when wiring and during
maintenance and inspections.

(3) Wire the power input terminals correctly and do not apply
voltages in excess of the specified voltage limits, since this will
cause the equipment damage.

2 PROSEC T3

Before reading this manual

Purpose of this manual This manual describes the functions (those functions which can be
achieved by the CPU and the basic hardware) of the Programmable
Controller T3. This manual also provides the necessary information for
designing application programs and operating the T3.
Read this manual carefully to use the T3 with it's maximum
performance.

Inside of this manual This manual is divided into the following 3 Parts.

Part 1. Basic Programming................... Gives the basic information for
programming, and shows how to
write a program into the T3 with a
simple example.

Part 2. Functionsccoooviveinine. For the full understanding of the
T3 functions, first explains the
internal operation of the T3 CPU,
and then explains the detailed
functions of the T3.

Part 3. Programming Information Explains the information for
designing a program which will
fuily use the functions of the T3.
Also explains Ladder diagram
and SFC as programming
languages for the T3. Explains in
the detailed information
summarized in Part 1.

Those who are using the T3 for the first time should first read Part 1 in
order to understand the basics of programming.

When Parts 2 and 3 are read in addition, the advanced control
functions of the T3 will be understood without difficulty.

Those experienced in using the T3 may skip Part 1, but refer to Parts 2
and 3 as necessary so as to fully use performance. Anindex is
provided at the end of this manual for that purpose.

When it comes to the configuration, some of the contents of Parts 1
and 3 are duplicated. However, please note that some portions of the
explanation in Part 1 are summarized for ease of understanding.

User's manual - Functions 3

Before reading this manual

Related manuals The following related manuals are available for the T3.

T3 User's Manual-Hardware
This manual covers the T3's main body and basic 1/O-thier
specifications, handling, maintenance and services.

T3 User's Manual-Functions
This document explains the functions of the T3 and how to use them.

The necessary information to create user programs is covered in this
volume.

T-series Instruction Set
This manual provides the detailed specifications of instructions for
Toshiba's T-series Programmable Controllers.

T-PDS Basic Operation Manual

This manual explains how to install the T-series program development
system (T-PDS) into your personal computer and provides basic
programming operations.

T-PDS Command Reference Manual
This manual explains all the commands of the T-series program
development system (T-PDS) in detail.

Handy Programmer (HP911) Operation Manual
This manual explains how to operate the Handy Programmer (HP911)
for the T-series Programmable Controllers.

T-series Computer Link Function
This manual explains the specification and handling method of the T-
series Programmable Controller's Computer Link function.

Analog Input Module (AD368) User's Manual
This manual provides the specifications and the operations of the
Analog Input module (AD368) for the T3.

Analog Output Module (DA364/DA374) User's Manual
This manual provides the specifications and the operations of the
Analog Output module (DA364/DA374) for the T3.

4 PROSEC T3

Before reading this manual

Note and caution Users of this manual should pay special attention to information
symbols preceded by the following symbols.

Calls the reader's attention to information considered
important for full understandings of programming
procedures and/or operation of the equipment.

Calls the reader's attention to conditions or practices that
could damage the equipment or render it temporarily

inoperative.
Terminology AWG American Wire Gage
ASCI American Standard Code for Information Interchange
CPU Central Processing Unit
EEPROM Electrically Erasable Programmable Read Only Memory
IF interface
/O input/Output
LED Light-Emitting Diode
ms millisecond
NEMA National Electrical Manufacture's Association
PLC Programmable Controller
PS Power supply
RAM Random Access Memory
ROM Read Only Memory
©s microsecond
Vac ac voltage
Vdc dc voltage

User’'s manual - Functions 5

Contents

PART 1

BASIC PROGRAMMING 1.

11
1.2

2.1
2.2
2.3

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4

5.1
5.2

6.1
6.2
6.3
6.4

OVEIVIEWccieeeeeeiiisir s serrssssss s s s s e s s nnnasss s s s s s e s ennns 13
System design ProCeduresccooeeeevveveevieriiiineeeeeenn, 13
Basic programming proceduresccccvvevvrvnnnnnnnn. 14
Operation Outline ..., 17
Operation mode and functions............ccccceeeeeeeeveeennnnns 17
Modes transition conditions............ccoeveeeeeeereeiiiiinnnnnnn. 18
Operation flow chart...........ccccooeieieiiiiicc e, 20
(710 27X [e Y= 4 Lo o 1T 23
FL@J=1 [oTox 1 o [23
Input and outpUL regiSterseeevveeeeeeveeeieeenieeenne. 24
Rules for I/O allocationcccevvviiiieeeeieeeeeiieen 26
Unit base address setting functionsccceeenne 29
User Programccccciiiiiiimmmmseeinsss s 31
User program configurationcccceeeeeevveeviinnnnnnnn. 31
System informationcccccoeeiieiiiiiii s 32
(W ISYCT o o] fo]e | =1 o J PPN 33
Program execution SEQUENCEccccceeernnnnnnnnnnnnns 35
(U LST=T g D - 1 - 36
User data types and functionscccccceeeveveiivnnnnnnnn. 36
Conditions for data initializationccccoeeiiiiiiinnne 39
Programming Exampleccceeeiiiiiiiiiimnneee, 40
Sample syStem. ... 40
Input/output allocationeevvevviiiiiiiieiiiiiiiieenee, 41
Sample program.........ooooiiiii 43
Programming procedureccccccoeoieiiiniinnnnnnnennnns a7

6 PROSEC T3

Contents

PART 2
FUNCTIONS 1.
1.1
1.2

2.1
2.2
2.3
2.4
24.1
2.4.2
2.4.3
2.5
2.6

3.1
3.2
3.3

4.1
4.2

5.1
5.2
5.3
5.4
5.5
5.5.1
5.5.2
5.6
5.7
5.8

OVEIVIEW.....ccoiiieeeeeecsssss s s rsssssss s s s s s s s snnnnss s s s s e s e ennns 7
T3 system configurationcccceeeviiiiiii, 71
Functional Specificationseevveeevveiiviieiieeenenne. 72
Internal Operationccccomiieecccciiine e 73
Basic internal operation floweevviviiiiiiiennnee. 73
System initializationccooooiiiiiiiieis 74
Mode CONIOlcoeiieeecee e 76
SYor= T o W oo 11 (o] IR 81

SCAN MOAE ..o 83

Batch I/O processingceeeevvveevieeeeeeieiiiiiiiiieennne, 85

Timer update ... 87
Peripheral SUPPOItcevvviiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeee 88
Programming support functionseeeveveeveeenee. 89
User Program Execution Controlccce........ 92
Program tyPesS........ocoeereiiiieeii e 92
Main/Sub programs execution control 93
Interrupt programs execution control 100
Peripheral Memory Support Functions 102
EEPROM SUPPOIT ...coviiiiiiiieee e 102
IC memory card SUPPOItcooovveeiiiiiiiiiiieieieeeeeeee, 103
RAS Functionscceeecciiiiiiiiirrreeenccsss e 104
OVEIVIBW ...ttt e e e e 104
Self diagnOStICS.....ccooiiiii e 104
EVENt NISTONY ..o 108
Memory protect fUNCioNceevvvvvvvviiiiiiiiiiiennee. 110
Power interruption detection function 111

Power interruption shut down function 111

Hot restart functioncccooeeeeiiiiiiiiiiiiiiee e, 113
I/O error mapping functioncccccoeeiiiiiiiiiiinnnnns 114
Online I/O replacement functioncccceeeeeeeennee. 115
Execution status monitoringeeeveeeveveveeennnne. 116

User s manual - Functions 7

Contents

5.9 Sampling trace functioncccoeeiii, 117
5.10 Status latch functionceevvivviiiiiiiiiiiiiiiiiiiieeee, 122
511 Debug support funCtioncccceeveveveeieeeeeeeeenenne. 123
5.11.1 FOrce fuNCioN...........evvvveiiiiiiiiiiiieeieeieeeeeeeeeeeeeeeee 123
5.11.2 Online program changing function........................ 123
5.11.3 Debug mode functions................eeeveeeeeeeveereeienennne. 124
5.12 System diagnNOSHCSeevvvvrerreriiieiriiieiieiieeeieeeeeeieeeee 131
5.13 Password funCltioneeeeeeveeeeiiiieeeiiiiieieeieeeeene 135

8 PrOsEC T3

Contents

PART 3
PROGRAMMING
INFORMATION

1. OVEIVIEW.....coiiiireeeeecss s s s s n s 139
1.1 AIMS OFf PAIT 3 ..o 139
1.2 User memory configuration..................eeeeveveeveeeennne. 139
2, User Program Configuration...........ccccccevueennnnnnnens 141
2.1 OVEIVIBW ...ttt e e e e e e e 141
2.2 System informationccoooeeiiiieiiieiis 143
2.3 O LYl o 0] (o]0 | = 1 o PP 147
2.3.1 MaiN Programeees 148
2.3.2 SUD-PrOgram.......coooi e 148
2.3.3 INterrupt Programcccoooeeveiinieceei e 150
2.3.4 SUD-TOULINES ... 153
2.4 COMMENTS.....iiiiieieiiie e 155
3. User Data...........oiimmmmeeccii e 156
3.1 OVEIVIBW ...ttt e e e e e e e 156
3.2 Registers and deViCeseeveveevevvevieiiiiiiiiiieieeee, 159
3.3 Register data typeseevvveevveeiiiiiiiiiiiiieiieeiiiieeee 182
3.4 Index modificationccccoeiiiiiiii 189
3.5 Digit deSigNationeeeveeeeeeeeeeeeeeeeieeeeereeeeeeeeeene 193
4, (710 272X | FoT o7 11 T'e Y o 1R 198
4.1 OVEIVIEW ...ttt e e e e e e e 198
4.2 Methods of input/output allocation 199
4.3 Register and module correspondence...................... 203
4.4 Network assignmenteeeeveveeeeeeeeeeeieieieeeeieeeee. 206
5. Programming Languageccccccumiiiinnniennnnnnnnnn. 21
5.1 OVEIVIEW ...ttt e e e e e e 211
5.2 Ladder diagramoeeeevveeieieiieiiiiiiieieeeeieeeeeeeeeee 214
5.3 S C e 221
5.4 Programming precautions.................eeveeveeeeeeeeeeeeene. 236
5.5 List Of INSIIUCHIONSeevviiiiiiiieieieeeeeeeeeeeeeeeeeeeeeeeee 238
... 264

User s manual - Functions 9

10 PROSEC T3

PART 1
BASIC PROGRAMMING

PART 1 BASIC PROGRAMMING 1. Overview

R e

Normally, the design of a contro! system to which the T3 is applied is

1.1
System design
¥ 9 carried out by the following procedure.

procedures

System Pianning

v

System Designing

|

Detailed Designing

v

Y

System Wiring Program Designing
Y l
input/Output Programming

QOperation Check

»>
A

Program Loading

L.
>

Y

Debugging

l

Combination Test

|

Test Run

Y

Program Storing

b

Hot Run

Study the configuration of the
conirol system and device
configurations (including PLC
selection).

Thoroughly study the operation
sequence of the system and
the abnormal sequence.

Study the interfaces between
T3 I/O modules and external
devices, and determine the
types of IO modules.

Create the T3 program
according to the sysiem
operation sequence.

Enter the program by using the
T-series programmer (T-PDS).

Load the program into the T3.

Carry out the T3 operation
check by simulated inputs.

Carry out an operation check
by combining with external
devices (the power circuit
should be cut off).

Carry out system trial operation
and adjustment.

Store the program on a disk file
and make documentation.

User's manual - Functions 1 3

1. Overview PART 1 BASIC PROGRAMMING

R

1.2
Basic programming The basic procedures for creating a T3 program and loading the
procedures program into the T3 are as follows.

M Determination of YO ---- Determine the types and
arrangement of the /O modules and
make an input/output map for the
external devices and the T3's data
memory.

Y

(2) Program Designing ---- Create the program based on the
operation sequence of the system.
At this time, give due consideration
to constructing the program by
dividing it into an input signal
processing section, a control
condition section and an output
section. Also the program will follow
the flow of control operation. By this
means, the program should be easy
to study, and therefore modification
and additions shouid be simple.

Y

(3) Starting the T-PDS +---- Start up the T-series Programmer
(T-PDS).
¥
(4) Selecting Offline Mode | - -- - Set the T-PDS to Offline mode and
initialize the Workfile
l (Workfile=Offline memory)

(5) /O Allocation ---- Write the input/output allocation
information based on the I/O
allocation determined in (1) above.

Write the program designed in (2)
(6) Programming ~ ---- above into the disk. Do not forget
the END instruction at the end of the
l program.
Connect the T3 and the programmer
) Startupthe T3 F---- (T-PDS) by the dedicated cable, and
l start the T3 with HALT mode.
(8) | Selecting Online Mode ---- Set the T-PDS to Online mode.
When communications between the
l T3 and the T-PDS are established,
the T3 operation mode is displayed

on the T-PDS screen.

14 PROSEC T3

PART 1 BASIC PROGRAMMING

©)

(10)

(11)

(12)

(13)

(14)

!

1. Overview

Clearing Memory

————— Clear the T3's memory by issuing

Y

the Clear Memory command from
the T-PDS. Ifthe T3 is in ERROR
mode, issue the Error Reset
command, then issue the Clear
Memory command.

Program Transfer

————— Transfer the program created in

l

offline mode to the T3.

Program Debugging

————— Put the T3 into RUN mode and

check the operation. When the 1/O
modules are not all mounted, use
the Forced RUN (RUN-F) function.

Program Modification

- ---- Carry out any required modifications

l

to the program.

Writing into the EEPROM

----- When the T3 CPU has built-in

Y

EEPROM (PU325}, write the
program into the EEPROM.

Normal Operation

----- Put the RAM/ROM switch to ROM,

and the operation mode switch to
RUN or P-RUN. Operation will then
start automatically the next time
when power is switched ON.

The above procedure is called ‘Offline mode programming’.
In the Offline mode programming, after the user program is developed
without the T3 hardware, it will be loaded into the T3 at a time.

User’s manuat - Functions 15

1. Overview

PART 1 BASIC PROGRAMMING

M

(2)

3)

o)

8

©)

(11)

(12)

(13)

(14)

On the other hand, the method of connecting the programmer (T-PDS)
to the T3 and writing the program directly into the T3 is called ‘Online
mode programming’. The procedure of Online mode programming is

as follows.

Determination of /O

Y

Program Designing

v

Starting the T-PDS

Y

Starting up the T3

v

Selecting Online Mode

Y

Clearing Memory

v

/O Allocation

|

Programming

v

Program Debugging

v

Program Modification

'

Writing into the EEPROM

Y

Normal Operation

—NOTE

Set the T-PDS to Online mode.

Clear (initialize) the T3’s memory.

When all the necessary /O modules
are mounted, the Automatic /O
Allocation function can be used.

Write the program directly into the
T3’s memory.

VA

run.

(1) Take special care for Safety during program debugging and test

(2) If power is switched on when the RAM/ROM switch is in RAM,
the T3 will not enter RUN mode automatically even if the
Operation mode switch is in RUN or P-RUN. (See Section 2.2)

16 PROSECT3

PART 1 BASIC PROGRAMMING

2. Operation Outline

2.1

Operation modes and There are 3 modes of RUN, HALT and ERROR as basic operation
functions modes of the T3. Also, as a variation of the RUN mode, the RUN-F
mode is available for debugging.

RUN Mode:

RUN-F Mode:

HALT Mode:

ERROR Mode:

— NOTE

This is the program execution mode. The T3 repeats
the reading of external inputs, execution of the user
program and the determination of external output
states. (One cycle of this operation is called a ‘scan’).

.. Monitoring of the program execution state and forced

input/output can be performed using the programmer.

This is a mode to force the program execution even
when the I/O modules are not mounted. (In the
normal RUN mode, this would give an I/O no answer
error). This is used for program debugging.

This is the operation stop mode. The T3 switchs OFF
all outputs and stops user program execution.
Normally, programming is carried out in this mode.
Also, writing the program into the EEPROM (in the
case of the PU325) is available in this mode only.

This is the ‘Error Down’ state. When the T3 detects
an error by self-diagnosis which renders continuation
of operation impossible, it will switch OFF all outputs,
stop the use program execution and enter the
ERROR mode. In the ERROR mode, all writing
operations to the T3 are prohibited. In order to
escape from this mode, it is necessary either execute
‘Error Reset’ from the programmer, or to switch the
power supply OFF and ON again.

VA

function.

1. Programs can be changed in both the RUN mode and the RUN-F
mode (this is called the ‘online program changing function’).
However, only normal programming in the HALT mode is

. .. described in Part 1.. See.Part 2 for the online program changing

2. Apart from the above 4 modes, there are actually the HOLD mode
and the DEBUG mode as well. These are described in Part 2.

User’s manual - Funciions 1 7

2. Operation Outline

2.2

Modes transition To determine/change the operation mode of the T3, the operation mode
switch on the CPU module, programmer PLC control commands and

conditions

PART 1 BASIC PROGRAMMING

T3 self-diagnosis are available. Also, the RAM/ROM switch on the
CPU module controls the operation mode at power up. These are
described below.

* Qperation Mode Switch...HALT/RUN/P-RUN

Switch Position

Operation Mode

HALT

When the mode switch is shifted from RUN or P-RUN to HALT, the
operation mode will turn to the HALT mode. Also, when power is
switched ON with the mode switch at HALT, the T3 wili start up in
the HALT mode.

RUN

When the mode switch is shifted from HALT to RUN, the operation
mode will turn to the RUN mode. When the swilch is shifted from
P-RUN to RUN, the operation mode will not change. The mode
when power is switched ON in the RUN position will be determined
by the RAM/ROM switch.

P-RUN

Signifies ‘Protect RUN'. Although its relationship with the
operation mode is the same as that of the RUN position, in the
case of P-RUN, the whole program and the leading 4k words
(D0000-D40YS) of the data register will be write-protected. Also,
‘Initial Load’ is prohibited.

*

RAM/ROM Switch

Switch Position

Operation Mede

RAM

Starts up in the HALT mode regardless of the setting of the
operation mode switch.

ROM

Automatic RUN will start when the operation mode switch is in
RUN or P-RUN.

* Programmer PLC Control Commands...HALT/RUN/Force RUN

Command

Operation Mode After Execution of Command

HALT

Shifts to the HALT mode (effective only when the mode switch is in
RUN or P-RUN}).

RUN

Shifts to the RUN mode (effective oniy when the mode switch is in
RUN or P-RUN).

Force RUN

Shifts to the RUN-F mode (effective only when the mode swilch is
in RUN or P-RUN).

18 PROSEC T3

PART 1 BASIC PROGRAMMING 2. Operation Outline

Previous state OP mode
OP mode transition factor after Remarks
OF mode RAM/ROM | Mode SW transition
HALT/RUN {Power ON HALT No Initial Load
RAM
P-RUN [Power ON HALT No Initial Load (Protect)
_ HALT Power ON HALT Initial Load execution
(Power OFF) | RoMm RUN |Power ON RUN Initial Load execution—RUN
P-RUN |Power ON RUN No initial Load (Protect)
— _ Error detection at power ON ERRCR
HALT Mode SW —RUN RUN
RAM Command RUN RUN No Initial Load
RUN/P-RUN
Command Force RUN RUN-F
HALT |Mode SW —ARUN RUN
initial Load execution—RUN
Command RUN RUN
RUN
ROM Command Force RUN RUN-F Initial Load execution-—+RUN-F
Command RUN RUN
HALT P-RUN No initiai Load (Protect)
Command Force RUN RUN-F
Mode SW —HALT HALT Mode unchange
RUN
Mode SW =—P-RUN HALT Maode unchange (Protect)
— P-RUN |Mode SW —RUN HALT Mode unchange (Protect release)
HALT [Command (any) HALT L
Command invalid (Mode unchange)
RUN/P-RUN| Command HALT HALT
— Error detection ERROR
AUN Mode SW —HALT HALT
Mode SW —P-RUN RUN | Mode unchange (Protect)
P-RUN |Mode SW —~RUN RUN Mode unchange (Protect release)
AUN — Command HALT HALT
Command RUN RUN .
RUN/P-BUN Command invalid {(Mode unchange)
Command Force RUN RUN
Error detection ERROR
RUN Mode SW —HALT HALT
Mode SW —P-RUN RUN-F | Mode unchange (Protect)
P-RUN |Mode SW —RUN RUN-F | Mode unchange (Protect release)
RUN-F — Command HALT HALT
Command RUN RUN-F
RUN/P-RUN Comrmand invalid (Mode unchange)
Command Force RUN RUN-F
Error detection ERRCR
Mode SW({HALT/RUN/P-RUN) ERRCR invalid
nvall
ERROR - — Command (except Error Reset) ERROR
Command Error Reset HALT Recovery to HALT mode

1) In this table, OP mode, RAM/ROM and Mode SW mean QOperation mode, RAM/ROM switch
and Operation Mode switch, respectively,

2) —means the switch status is not related to.

3) See next page for the Initial Load.

User’'s manual - Functions 1 9

2. Operation Outline PART 1 BASIC PROGRAMMING

23
Operation flow chart User programs can be produced without fully understanding the internal
processes of the T3. However, understanding the outline of the internal
processes will be effective in producing more efficient programs and in
carrying out appropriate debugging. The following drawing gives a T3
internal process overview.

(Power on)
v

Self-diagnosis System initialization
(always) J’
i Initialload [---- D
(ERROR mode) ¢
User data initialization @ [~~-~ @
hd
(HALT mode)*—] Operation mode control User program EEPROM
+ memory (RAM) (IC memory card)
(RUN/RUN-F mode) r\ H
v @
® e <= | Program
Batch input processing F--r-®
HEND]—
Y Data
Batch output processing ---F-@ @__> u//
Data ©
=l ® Input
L 4 ®| | Input <— module
User program execution IR ! e | — Output
; ® Output % module
@ Initial Load

When the RAM/ROM switch is in ROM and the operation mode
switch is in other than P-RUN, the following contents stored in the
EEPROM (PU325 only) or the IC memory card will be transferred to
the T3 RAM at power up and at transiting from the HALT mode to
the RUN mode.

In the case of an IC memory card being mounted in a EEPROM-type
T3 (PU325), the initial load will not be executed from the EEPROM,
the initial load will be executed from the IC memory card only.

(1) Whole user program
(2) Leading 4k words of data register (D0000 to D4095)

20 PRoSECT3

PART 1 BASIC PROGRAMMING 2. Operation Outline

® User Data Initialization
User data (data register, timer, counter, input register, output
register, etc) are initialized. User data is explained in Section 5.

® Batch Input Processing
The status of external input signals will be read from input modules
and stored in the input registers. (The input register is sometimes
called the ‘input image table’.)

@ Batch Output Processing
The status of output registers is written to the output modules.
The output module determines the ON/OFF staie of output based on

this. (The output register is sometimes called the ‘output image
table’.)

® User Program Execution
The instructions stored in the user program memory are read one by
one, and the contents of the output register are updated while
referring to the contents of the user data. This is an essential
function of the T3.

One cycle from operation mode control to user program execution is
called ‘one scan’. The time required for 1 scan is called the ‘scan cycle’
(or the ‘scan time’). :

Generally, the shorter the scan cycle, the faster the output response to
a change in input signal.

User’s manual - Functions 21

2. Operation Outline PART 1 BASIC PROGRAMMING

X

—NOTE
VA

The important items related to the T3 operation mode and the
switches are summarized below.

(1) When power is turned on with the RAM/ROM switch at RAM
position, the T3 starts up in HALT mode. Therefore, use the
RAM position during debug and test run, and set to ROM in
normal operation, regardless.of the type of the T3 CPU.

(2) When the Operation Mode switch is in P-RUN, leading 4k words
of the data register (DO000 to D4095) will be write-protected.
For some instructions, data writing to this area by program
execution is also disabled. (refer io Part 2 Section 5.4)

(3) In a CPU with a built-in EEPROM (PU325) or an IC memory
card, the Initial Load will be executed at power on and at the
beginning of RUN mode transition if the RAM/ROM switch is in
ROM and the Operation Mode switch is in other than P-RUN.
Therefore, if you have changed the RAM program, write it into
the EEPROM or the IC memory card before turning off power or
switching to RUN mode.

(4) The obiject of the Initial Load is whole program and the leading
4k words of data register (D0000 to D4095).
Therefore, even if the range of DO00O to D4095 is specified as
retentive, these data will be initialized by the data of the
EEPROM or the |C memory card.

(5) When the Initial Load condition is satisfied, do not change the
Operation Mode switch HALT —RUN — P-RUN quickly. If so, the
Initial Load will be interrupted and RAM program become
abnormal. Turn to P-RUN only after the RUN LED is lit.

22 PROSEC T3

PART 1 BASIC PROGRAMMING 3. I/0 Allocation

3.1

/O allocation As described in Section 2.3, communication between input modules or

output modules and the user program is executed via the input
registers and the output registers.

1/0 allocation is the determination of which address of the /O registers
shall be assigned to which /O module. Basically, this is determined by
the mounting order of the modules. Therefore, informing the CPU of
the module mounting order is called ‘I/O allocation’.

The following two methods are available for performing 1/O allocation.
Either method requires that the T3 is in the HALT mode and that the
operation mode switch is in a position other than P-RUN.

(1) Automatic I/O Allocation
Execute the automatic 1/O allocation command to the T3 from the
programmer. The T3 CPU reads the module types of /O modules
mounted (see the table on the next page) and stores this in the user
program memory as /0 allocation information.

(2) Manual /O Allocation
Set the mounting positions and the module types of I/O modules on
the I/O allocation screen of the programmer, and write this
information to the T3.
Manual I/O allocation is used when performing programming in a
state in which not all the /O modules have been mounted, or when
using the unit base address settings described in Section 3.4.
Manual I/O allocation is also used for offline-mode programming.

When the 1/O allocation information is stored in the T3 memory by
these methods, the correspondence between the 1/O modules and the
I/O register is automatically determined by the rules described in
Section 3.3.

*} In practice, special allocation of module types other than those
shown in the table on the next page can be executed by manual
I/O allocation. However, the description is omitted here. The
details are described in Part 3.

User's manual - Funciions 23

3. I/0 Allocation PART 1 BASIC PROGRAMMING

The module type of I/O module is expressed in the following table by a
combination of a functional classification (X:Input, Y:Output, X+Y:I/O
mixed) and the number of registers occupied (W).

Maodule Description Module Type
DI334/334H 32 points DC input X 2w
DI335/335H 64 points DC input X 4w
IN354/364 32 points AC input Xaw
DO333 16 points DC output Y 1w
D0O334 32 points DC output Y 2W
DO335 64 points DC output Y 4W
AC363 16 points AC output Y 1w
AC364 32 points AC output Y 2W
RO364 32 points Relay output Y 2W
RO363S 16 points Relay output (isolated) Y 1W
AD368 8 channels analog input X 8W
DA364/374 4 channels analog output Y 4W
CD332 Change detect 8 points DC input iX 1w
PI312 2 channels pulse input iX+Y 2W
AS311 ASCIl module iX+Y 4W
SN321/322/323 TOSLINE-S20 data transmission TL-S
MS311 TOSLINE-F10 data transmission TL-F

3.2
Input and output In the previous Section, I/O allocation is the performance of
registers correspondence between I/0O modules and input/output registers. Here,
the configurations of input registers and output registers, and methods
of address expression are described.

In descriptions hitherto, input registers and output registers have been
treated as separate entities. However, from the viewpoint of memory
configuration, this is not correct.

24 PROSEC T3

PART 1 BASIC PROGRAMMING 3. 1/0 Allocation

In practice, the input register and the output register use the same
memory area which is called the ‘lI/O register’. In other words, before
performing /O allocation, the |/O register is not colour-divided for input
and output. Colour-division of input and output in register units (16-bit
units) is performed by carrying out I/0 allocation. (Before allocation,
internally, all are regarded as output registers).

This idea can be conveyed by the following drawing.

IO Register I/O Register
(before /O aliocation) (after I/O allocation)

YWO000 XWooo -—
YWOO1 I/C allocation XW001
YW002 —> YW002]

1 i I 1

1] 1 I
YW 255 Yw255 -
e e

T— Register contents (16-bit data)
Register address

Input/output classification (Input=XW, Output=YW)

This address expresses allocation as output ——

This address expresses allocation as input

The 1/O register is a 16-bit register, and 256 registers are available.
(“16-bit’ signifies that it stores the ON/OFF information for 16 points.)

The /O register used in the user program is expressed as follows.

When an input register . XWO 50O
When an output register ..YW[[J [

The above [J [[] expresses the register address (also called the
‘register number’), a decimal number from 000 to 255.

Also, each bit (called a ‘device’) in the I/O register is expressed as

follows.
When a bit in an input register (input device) LXOOO
When a bit in an output register (output device) LYOood

The above [][1[] expresses the register address and the
expresses the bit position in the register.

As bit positions, 16 positions of 0, 1, ..., 9, A, B, C,D, E, F are
available.

User’s manual - Functions 25

3. I/0 Allocation PART 1 BASIC PROGRAMMING

3.3
Rules for /O allocation When I/O allocation is performed either by the automatic /O allocation
or the manual I/0O allocation method, the I/O allocation information
(information on which type of module is mounted in which position) is
produced in the user program memory. The coordination between the
registers and the IO modules is decided according to the following rules.

(1) In the basic unit, allocation is carried out from the module
immediately to the right of the CPU in sequence from the lowest

register address.
P Cl| X X Y | X YIYI|Y
SI|Plalatz|2lalajalati]
Ulw wiw/ w|wiw| | w|wiw|w
XW000, XwWoo1 —T T—YWOZS
XW002, XW003 YW022
XW004, XW005 YWO020, YW021
YWO006, YW007 XW016, XW017, XW018, XW019
YW008, YW009, YWO010, YWO011 XW012, XW013, XW014, XW015

(2) In the case of expansion units, allocations are given following on
from the previous stage unit in sequence from the left end module
to the right end module.

Register allocation table

t1b¢
n Type Register
PUG 1 2 3 4 56 7 8 9 e |'® g
Basic PllC|X|X|{X|Y|Y[X|XjY|Y|{Y 0 0 [X2W [XW000, XW001
(#0) s|lip il s §
FPlolaloalalalalal2|1]1
Ujwlwiw|w|w|w | w|wl w|w 9 IY1W [YW023
1] 0 [X2W [XW024, XW025
0 1 2 3 4 6 6 7 8 9 10 1 [X2W [XWO026, XW027
Expansion| P || X | X | X | X|X | Y |Y /Y 1YYy 2 IXoW [XW02B. XW025
(#1) SF“% olalalalalaf1i1]1]1 = 3 |X2W IXW030, XW031
Wiwlwlwiwiwjwijwjwlw 4 [X2W [XW032, XW033
0 1 2 3 4508678 9 10 5 [Y2W [YW034, YW035
Expansion| P 11Ty [y [x [x[y [y [x]x[ylvly 6 [Y2W [YWO036, YW037
#2) s |\ 7 [Y1w [ywoss
2l2lalz2i2|2|2l2|2]2}2
wliwiwiwjwiwiwiwlwi wiw 8 [Y1W [YW039
9 IY1W [Ywo40
10lY1W [YWoa1
2|0 [Y2aw [YWo042, YW043
§ i H

*} Inthe I/O allocation, for convenience, the module mounting position
is expressed by a combination of the unit number and the slot
number.

Unit number: #0, #1, #2, #3 in sequence from the basic unit
Slot number: 0, 1, 2, ... 9 {or 10) in sequence from the module
mounting position at the left end.

26 PROSEC T3

PART 1 BASIC PROGRAMMING 3. 1/0 Allocation

{3) Slots in which no moduie is mounted (in manual I/O allocation, siots

for which no type is set) do not occupy registers. These are called
‘vacant’ slots,

P{iiCIX|XIX|IVIVIVIYIVIYI|V
HE 1ML
S|Pz 2(d(d(2]|2(d[1]8
Ulwiw|w|lT|[T | wliw|t|w|l
A A A
XWO000, XW001

XW002, XW003
XW004, XW005
YWO008, YW007
YWO008, YW009
YWO010

(4) In case of the 5-slot basic rack (BU315), slots 5 to 9 are regarded
as vacant. Similarly, in case of the 6-slot expansion rack (BLU356),
slots 6 to 10 are regarded as vacant.

Register allocation table

Basic | P

#0) |8 |': Type Register

e
CoO|s
20 X|o
=0 <N
z2—- =<lw

~< |

En X|=
= =

Ol -3 C

vl sljw|v|a|lo|lol-fon|s ||]lof~0C —W

X 2W | XW000, XW001
X AW | XW002, XW003
Y 2W | YWO004, YWO005
Y 1W | YWO006
Y 1W | YWO007
Vacant —

$ i
Vacant —_
X 2W | XW008, XW00g
X 2W | XW010, XW011
X 2W | XW012, XW013
Y 2W | YWO014, YWO015
Y 2W | YW016, YWO17
Y 1W | YWO018
Vacant —

5 5
10|Vacant —

Expansion| P
(#1) s |/

=y

=N X©
EN X
s <|w
2N <|ks

< |t

EN OX|—=

User’s manual - Functions 27

3. 1/0 Allocation

PART 1 BASIC PROGRAMMING

(5) After an input/output register is allocated to an I/O module, the
individual external signals on the module are allocated to each bit
(device) on the register. At this time, in modules to which muitiple
registers are allocated, lower register address is allocated to the
lower common (LC) side.

(Example)

The following is the input signal and input device coordination when
XW004 and XWO005 are allocated to a 32-point input module (X2W).

0 X0040 —
—_ X0041 1 1 0 O—
0 © 2 2 X0042 —
— X0043 3 3 0 0
—0 © 4 4 X0044 —_
— X0045 5 5 O 0
-0 © 6 6 X0046 —
— X0047 7 7
—0 © 8 LCO
— X0048 8 9 PS o—
0 O 10 9 X0049 —
_ X004A A 11 —0 ©
O © X004C G 12 . B X004B 5=
°° X004E E 14 15 D __ X004D I
0 o o1 16 - F XOQ04F =
@ 18 0 X0050 i
— X0051 1 19 o C
o o 20 2 X0052 —
— X0053 3 21 0 ¢
o o 22 4 X0054 -
— X0055 5 23 —0 ©
o © 24 6 X0056 —
—_— X0057 7 25 0 0
°° x0086 8 o2 o7 N0 (PS)
—o © 28 9 X0059 '~ __
— X005A A 29 o 0
-0 © 0056 G 30 » B X005B = |
0 © 32 D X005D _
— X005E E 33 O O
—0 O 34 F XOO5F .
D HO1 g 135 e
NS 86 "2 7INC
NC | 38

(6) Special modules (modules which are not designated by X, Y, X+Y,
iX, iY, iX+Y as moduie types) such as data transmission modules do

not occupy input/output registers.

(7) Input/output registers which are not allocated, internally become
output registers, and can be used in the same way as auxiliary
registers/relays in the program.

28 PROSECT3

PART 1 BASIC PROGRAMMING 3. 1/0 Allocation

3.4
Unit base address
setting functions

As a special function for input/output allocation, there is a function
which can set the base register address of each unit.

This function is achieved by the manual /O allocation.

If this function is used, the register address does not shift even when
module additions are carried out in the future.

PUD 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 98 10

Basic| P | CIX|X | X[X[XiX]|X Expan- P i XX | XX X|X|X

(#O)SFS4442222 (Sg)' SIFl2lalal2l2l2]2

WIW| W IW|(W|W|W WIW| W W[Wiw|Ww
0 1 2 3 4 5 6 7 8 9 10 c t 2 3 4 5 6 7V 8 9 10
expan-| P [YTY Y [YTY]YTY expan | P [T Y [Y[YY]YTY
son | S1E 41 4lal2l2|2]|2 sion |\ SIFl 5| a1] 1]1]1
{#1) wliw|lwlwlw|wiw #3) wiw{lwlwiw|w

Register allocation table

U S U S

n| Unitbase |1 | Type Register n| Unitbase ||| Type Register

% address ‘t) { address ?

0 000 PU — 2 100 0| X2W | XW100, XW101
0 | X 4W | XW000~XW003 1 X2W | XW102, XW103
1 | X 4W [XW004~XW007 2 1 X2W | XW104, XW105
2 | X4W | XW008~XW011 3 | X2W | XW106, XW107
31 X2W [XW012, XW013 4 [X2W | XW108, XW109
4 1 X2W [XW014, XW015 5 Xa2w | XW110, XW111
5| X2W | XW016, XW017 6 | X2W [XW112, XW113
6 | X2W | XW018, XW019 7 —_

7 — 8 —
8 — 9 —
9 — 10 -

1 050 O |Y4W | YWO50~YWO053 3 150 0iY2W |YW150, YW151
1Y 4W | YW054~YWO057 1|Y2W [YW152, YW153
21Y2W | YWO058, YWO059 2| Y1W |YW154
31Y2W |YW060, YWO061 3|Y1W 1YWI155
4 Y 2W | YWO062, YWO063 4 1 Y1TW |YW156
5|Y2W | YWO064, YW065 5(Y1W | YWI157
6 | Y2W | YWO066, YW067 6 —

7 — 7 —
8 — 8 —_—
9 —_— 9 —
10 — 10 —

User’s manual - Functions 29

3. I/O Aliocation PART 1 BASIC PROGRAMMING

—_NOTE
VAV

(1) Apart from register address skipping between units, when the
unit base address setting function is used, it follows the /O
allocation rules described in Section 3.3.

(2) A setting which gives a latter stage unit a low register address
cannot be performed. For example, a setting by which the base
address of Unit #1 is 50 and the base address of Unit.#2 is 30
cannot be performed.

(3) When automatic 1/0O allocation is performed, there is no base
address designation for any unit. The registers are allocated in
succession. (As described in Section 3.3).

30 PROSECT3

PART 1 BASIC PROGRAMMING 4. User Program

4.1
User program
configuration

A group of instructions for executing control is called a ‘user program’.
This is also called an ‘application program’, a ‘sequence program’ or a
‘logic circuit’. In this manual it will be called a ‘user program’.

The memory area which stores the user program is called the ‘user
program memory’, and in the T3 it has a capacity of 32k steps.
However, out of this, 0.5k steps are used to store the user program
ancillary information (this is called ‘system information’). Therefore, the
actual user program capacity-will be 31.5k steps. .Also,.if Tags and
Comments are stored in the T3, a part of this area is used. A ‘step’is
the minimum unit which composes an instruction and, depending on
the type of instruction, there will be 1-10 steps per instruction.

EEPROM

0.5k steps I' System information « {or IC memory card)

A

User program RAM memo
: ry
31.5k steps ‘./——
4 | Tagand comment |-
—_NOTE
VA

(1) The EEPROM is available only in the case of a built-in EEPROM
type CPU (PU325). When an IC memory card is installed, the
IC memory card will take priority over the EEPROM, but the
description is omitted in Part 1. See Part 2 for the IC memory
card.

(2) For the conditions for transfer from the EEPROM (or the IC
memory card) to the RAM (the Initial Load), see Section 2.3.

(3) Tag and Comment are explained in Part 3.

User’s manual - Functions 31

4. User Program PART 1 BASIC PROGRAMMING

4.2
System information ‘System information’ is the area which stores execution control
parameters and user program control information for executing the user
program, and occupies 0.5k steps. The foliowing contents are included
in the system information.

(1) Machine parameters (model type, memory capacity)

(2) User program information (program ID, system comments, number
of steps used, etc.)

(3) Execution control parameters (scanning mede, sub-program .and
interrupt program execution conditions)

(4) Retentive memory area information

(5) 1/O allocation information

(6) /O interrupt assignment information

(7) Network assighment information

{8) Compuiter link parameters

(9) Systemn diagnosis function execution conditions

Qut of these, the CPU automatically performs the setting/updating of
the machine parameters of (1) and the number of steps used of (2).
{tems apart from these are set by the user from the programmer. Here,
only the retentive memory area information of (4) and the I/O allocation
information of (5) are described. The other items are described in Part
2 and Part 3.

*

Retentive memory area

The ranges for retaining the data during power off can be set for the
auxiliary register (RW), the timer register (T), the counter register
(C) and the data register (D). Data other than within these set
ranges will be O-cleared (device is OFF) in the data initialization
process at power up. This setiing is performed in a way to
designate from the first address (0) to a designated address for
each of the above registers. (See Section 5.2 for details)

I/O allocation information

As described in Section 3, 1/O allocation information is stored here
by executing automatic 1/O allocation or manual I/O allocation. The
CPU determines input/output register allocation based on this
information. Also, as self-diagnosis, the CPU executes a check as
to whether the modules in the allocation information are correctly
mounted.

32 PROSECT3

PART 1 BASIC PROGRAMMING

4. User Program
e]
4.3

User program The user program is a group of instructions for executing control, and

has a capacity of 31.5k steps. The function which executes the user
program is the main function of the programmable controller T3.

The user program is stored by each program type as shown in the
following diagram, and it is managed by units called ‘blocks’ in each

program type. Also, in 1 block, the user program is managed by a rung
number (in the case of ladder diagram). Therefore, in the

monitoring/editing-the user program,.a specified rung.can-be called by
designating the program type, block number and rung number.

User Program Configuration

Program Type Intemal Block Internal Structure
(Program Types) Structure (Blocks}) (Rung Numbers)
Rung 1
Main pregram ::I—I l—lj
Block 1 |:|'"4
___________________ -
Sub-program #1 A
___________________ ltl L e Rung 2
\ [L mMov }—
-]
Sub-program #2 ' Block 2 I'l I_‘
___________________ 1 1 b o e = -
! \
Sub-program #3 [et \ Rung 3
___________________ ' '
\ Block 3 \ l:: C
Sub-program #4 ' 4
___________________ I e R ‘,I e
Timer interrupt program |'. '1‘
___________________ '
I/O interrupt program #1 ! \\
___________________ L] ——————————] \ e m e ——— - ad
L] 1
/O interrupt ram #2 } L
7 Inferiup! program < i ' | Rungm
. ' V| {m=no limit
/O interrupt program #3 ' Block n ¢ { imit)
"""""""""" ‘ {(n=maximum 256) WHH
YO interrupt program #4 4 \
___________________ 1
1 N T
YO interrupt program #5 b
/O interrupt program #6
et L L1 L
/O interrupt program #7
I/Q interrupt program #8
Sub-routine

User’'s manual - Functions 33

4. User Program | PART 1 BASIC PROGRAMMING

*

Program Types

As program types, the main program, sub-programs (#1-#4), the
timer interrupt program, /O interrupt programs (#1-#8) and the sub-
routines are available. Although there is a capacity limit of within a
total of 31.5k steps, there is no capacity limit on any of the program
types.

* Blocks
From 1 to 256 are effective as block numbers. Every block has no
capagcity limit.. In the.T3, apart from.the. Ladder.diagram, the SFC
language can be used. However muitiple languages cannot be
used in one block. In other words, when multipie languages are
used, it is necessary to separate blocks. In the case of using the
ladder diagram only, there is ho need to divide the block.

* Rungs
Within the block, the user program is managed by the rung number.
(In the case of the Ladder diagram). A ‘rung’ signifies one grouping
which is linked by lines other than right and left power rails. There
is no limit to the number of rungs which can be programmed within
one block. The size of one rung is limited to 11 lines x 12 rows
(maximum 132 steps), as shown in the following diagram.

2 3 4 5 6 7 8 9 10 11 12

1
A A >
e o o S S S
o bt oo
N
L
5L
0 e e
s AT
0
L e e s i s e
PP O SR AV PN SN U ROTO SO

34 PROSECT3

PART 1 BASIC PROGRAMMING 4. User Program

4.4
Program execution
sequence

The main program is the main body of the user program which
executes every scan, and must have at least one END instruction.
Here, the program execution sequence is described in the case of the
main program only. The operation of other program types is described
in Part 2.

The user program is executed in the following sequence.

(D The main program is.executed in.sequence from the first block (the
lowest number block) to the block which contains the END
instruction.

@ Within one block, it is executed in sequence from the first rung
(Rung 1) to the last rung (in the case of the block containing the
END instruction, to the rung which has the END instruction).

@ Within one rung, it is executed in accordance with the following
rules.

connection, execution is
carried out from left to right.

1 2 4 6 7
(2) When there are OR I___.(
connections the OR logic _-l ia : : | l I__—‘
]
|

(1) When there is no vertical _1i 2 3 4)_1

X

path is executed first.

©
(3} When there are branches, i,, 3, 4, 5,)_
execution is carried out from o ! I 6l i 7\
the upper line to the lower I 7 }_
3 | \
line.
4) A combination of (2) and (3 1 3, 4, 5,
2 8 8,
1 C
71
|
—_NOTE
VA
1. The block numbers need not be consecutive. In other words,
there may be vacant blocks in the middle.
2. The rung numbers must be consecutive. In other words, vacant
rungs cannot be programmed in the middle.

User’s manual - Functions 35

5. User Data PART 1 BASIC PROGRAMMING

51
User data types and Data stored in the RAM memory of the CPU and which can be referred
functions directly in a user program, such as the states of input/output signais,
control parameters and arithmetical results during execution of the user
program are called ‘user data’.

From the viewpoint of treatiment, user data can be considered as
divided into registers and devices.

Registers. are locations which.store .16-bit data. . The following types are
available according to their functions.

Code Name Function Number Address Range
XW |Input register Stores input data from the input XWO000-XW255
module (batch input)
YW | Qutput register Stores output data to the cutput YWO000-YW255
module (batch cutput) Total

IW | Direct input register| Direct input data from the input |26 WOrdS | \wi000-iW255
module (direct input)

OW | Direct output Direct output data to the output OWO000-OW255
register module(direct output)

RW | Auwdliary register iUsed as a temporary memory for | 512 words RWOO0-RW511
results during execution of the
user program

SW | Special register Stores error flags, execution 256 words SWO00-SW255
control flags, ciock-calender data
timing clocks, etc.

T |Timer register Stores elapsed time during timer {512 words TO0OD-T511
instruction execution.

C |Counter register |Stores current count value during {512 words C000-C511
counter instruction execution

D Data register Used for storing control 8192 words D0000-D8191
parameters and as a temporary
memory for execution results

W |Link register Data exchange area with data 1024 words WO0000-w1023
transmission module
(TOSLINE-S20)

LW {Linkrelay register jData exchange area with data 256 words LWO0O0O-LW255
transmission module
{TOSLINE-F10)

F File register Used for storing control 8192 words FO000-FB8191
parameters and for storing
accumulated data

1 Used for indirect addressing for {1 word { {(No address)
T |Indexregister | Saier designation of 1 word J(No address)
1 word K {Ne address)

*1) In the T3 system, 1 word is treated as equal to 16 bits and units
called words are used as numbers of registers.

*2) All register addresses are decimal numbers.

*3) In the timer register TO00-T063 increase in 0.01 second units (0.01
second timer) and T064-T511 increase in 0.1 second units (0.1
second timer).

36 PROSEC 13

PART 1 BASIC PROGRAMMING 5. User Data

On the other hand, ‘devices' are locations which store 1-bit data
(ON/OFF information). The following types are available according to
their functions.

Code Name Function Number Address Range

X {Input device Stores input data from the input X0000-X255F
moedule {batch input)
Corresponds to 1 bit in the XW

register
Y Qutput device Stores output data to the output Y0O000-Y255F
. '| modute (batch cutput)
Corresponds to 1 bit in the YW | Total 4096
register points
| Direct input device |Direct input data from the input 10000-1255F
module (direct input)
O [Direct cutput Direct output data to the output 0000-0255F
dsvice module(direct output)
R |Auxiliary relay Used for intemal relay. 8192 points R000-R511F
device Corresponds to 1 bit in the RW
register

S Special device Stores error flags, execution 4096 points S0000-S255F
controt flags, timing relays, etc.
Corresponds to 1 bit in the SW
register

T. |Timer relay device |Reflects the execution result of (512 points T.000-T.511
the imer instruction
Corresponds to the T register
operation of the same address

C. [Counter relay Reflects the execution result of (512 points C.000-C.511
device the counter instruction
Corresponds fo the C register
operation of the same address

Z |Link device Data exchange area with data 8192 points | 20000-Z511F
transmission module
{TOSLINE-S20)
Corresponds to 1 bit in the
leading 512 words of the W
register

L Link relay device |Data exchange area with data 4096 points LOO0O-L255F
transmission module ’
{TOSLINE-F10)

The address expressions for devices are as shown below.

Otherthan T. and C. ...X 063 F
L— Bit position in the corresponding
register (0-F)
Address of corresponding register
(decimal number)
Function code (X, Y, O, I, R, S, Z, L)

T.and C. ...T. 255

Address of corresponding register
(decimal number)
Function code (T., C.)

—H

User’'s manual - Functions 37

5. User Data PART 1 BASIC PROGRAMMING

Therefore, for example, device X0352 expresses bit 2 of register
XWO035, and if X0352 is ON, it means that bit 2 of XW035 is 1.

{MSBY* (LSB)*
F EDCB A9 8 7 6 5 4 3 2 1 0 -<«—Biposition

xwoss | | | | [[[[] [Je[]]
;XOSS2=ON

—NOTE
VAV

(1) The least significant bit {LSB) is bit 0 when numerical values are
handled in the register.

(2) When the direct input register/device(IW/) are used in an
instruction, input data will be read directly from the input module
when that instruction is executed. (This system is called the
‘direct input system’). As opposed to this, in the input register
(XW), input data will be read from the corresponding input
module in a batch before user program execution. (This system
is called the ‘batch input system’). In the input/output allocation,
an W and XW of the same address correspond to the same
input module.

(3) When the direct output register/device (OW/O) are used in an
instruction, those data will be outputted directly to the output
module when that instruction is execuied. (This system is called
the ‘direct output system’). As opposed to this, the contents of
the output register (YW) will be outputied to the corresponding
output module in a batch before user program execution. (This
system is called the ‘batch output systeny’).

In the input/output allocation, an OW and YW of the same
address correspond to the same output module.

Note that, in the case of direct output by device O, the other 15
bits in the same register (OW) are also directly outputted.

(4) See Part 3 for details of registers/devices.

* LSB: Least significant bit
MSB: Most significant bit

38 PROSECT3

PART 1 BASIC PROGRAMMING

5. User Data

5.2

Conditions for data The user data are initialized according to the conditions in the following
initialization table at power up and at transiting the RUN mode.
Also, the leading 4k words of the data register (D0000 to D4095), are
the subjects of the Initial Load. Therefore, when the Initial Load
conditions are established, initialization will be carried out in the
sequence |nitial Load — data initialization. (See Section 2.3 for |nitial

Load)

Register/Device

Initialization

Input registers/devices(XW7X)

For forced input devices the previous state is
maintained, the others are O-cleared

Output registers/devices(YW/Y)

For coil forced output devices the previous state
is maintained, the others are O-cleared.

| Auxiliary registers/devices(RW/R)

For registers designated as retentive and coil
forced devices the previous state is maintained,
the others are O-cleared

Speciat registers/devices(SW/S)

CPU setting part is initialized and the user setting
part is mainiained.

Timer registers/relays (T/T.)

Counter registers/relays (C/C.)

For registers designated as retentive and the
devices which correspond to them the previous
slate is maintained, the others are 0O-cleared

Data registers (D)

For registers designated as retentive the previous
state is maintained, the others are 0-cleared.

If the Operation Mode switch is in P-RUN, leading
4k words (D0O00 to D4095) are maintained.

Link registers/relays (W/Z}

For forced link devices the previous state is
maintained, the others are 0-cleared

Link relays (LW/L}

For forced link relays the previous state is
maintained, the others are 0-cleared

File registers (F)

All maintained

Index registers (1,J,K}

All O-cleared

*) The retentive memory area designation is available for the RW, T, C

and D registers.

These areas are designated by the system information setting
function of the programmer. For each register the area from the first
address (0) to the designated address becomes the retentive

memory area.

T-PDS’s Retentive Memory Area Designation Screen

13. Retentive memory area
RWO000
TOO0O
C000
D0000

——r——
[S R

User's manual - Functions 39

6. Programming Example PART 1 BASIC PROGRAMMING
. __]

6.1
Sample system

In this section, simple sequences as examples, input/output allocation,
program designing and also the procedures for the actual programming
operation are shown. Refer to them when using the T3.

Let us consider the sequence in the following diagram as an example

Q19| 9| 9] Numerical setting device (BCD output type)

@ Operaticn switches (start, stop, emergency stop, fault reset)

l—_ E Limit switches (LSO, LS1, LS2, LS3)

Y

T3 <« -0 o Motor answerback (running forward, running in reverse}

b l:ﬂ:D Motor {(forward, reverse)

N~ Lamp displays (preparation complete, operating, operation
> —O- complete, fault)
PAREN

-: Numerical display device (BCD input type)

-
Vi
-
¢S
-
Vo
-

e ree——

K
)
[)
)

-
-
-
-
-
-
-

(D When the ‘Start’ switch is pressed with LSO in the ON state, the
following operation is executed.

LS0 Foward > LSt Foward > LS2 Foward > LS3

\ {Stop for 1 second) (Stop for 2 seconds) (Stop for 3 seconds)

(Stop for 10 seconds Reverse
after LSO returns to ON)

@ The above operation is repeated only for the number of times set by
the numerical setting device. During the operation, the ‘Operating’
lamp is lit and, at the same time, the actual number of executions at
that time is displayed on the numerical display device.

When the operation is completed, the ‘Operating’ lamp will go out,
and the ‘Operation complete’ lamp will be lit.

@ If the “Stop’ switch is pressed during the operation, the motor is
stopped at that position and, after 1 second, starts in reverse. When
the LSO becomes ON, the motor is stopped and, after 1 second, the
‘Preparation complete’ lamp is lit.

40 PROSECT3

PART 1 BASIC PROGRAMMING 6. Programming Example

@ When LS0 is ON in states other than during operation, the
‘Preparation complete’ lamp is lit. The ‘Start’ switch is only effective
when the ‘Preparation complete’ lamp is lit.

(® When the ‘Emergency stop’ switch has been pressed, the motor is
stopped in that position and the ‘Fault’ lamp is lit. In that state, if the
‘Fault reset’ switch is pressed, the ‘Fault’ lamp will go out.

6.2

Input/output allocation First decide the module configuration-and-make a Map of
Correspondence between external signals and registers/devices. Here,
the allocation is made for modules with the configuration shown below.

*

Module configuration and register allocation

01 2 3 4
p ploloim Rack : BL315 (for Basic, 5 /O slois)
S ulilolo PS : PS361 (100-120/200-240 Vac)
3. 3(3{3|3 CPU : PU315 (Standard)
6 113|386 Input : DI334 (32 points DC input)
1 5(414]3 Output : DO334 (32 points DC output)
s RO3638S (16 points isolated Relay output)
XWO000, XwW001 —T l
YW002, YWO003
YW004
* Input/Output Map
XW000 (Numerical Setting Device) XWO001 (Switches)
0000 |) X0010 | Emergency stop (normaily ON)
01 L %100 11 | Fault reset
0z 12 | Start
03 13 | Stop
04 | 14
05 > x101 15
06 16
07 | | 17
08 |) 18 |LS0
09 L 102 19 {LS1
0A 1A |LS2
0B | J 1B |LS3
oc | 1C | Answerback forward
oD 1D | Answerback reverse
> %108
OE 1E
oF | | 1F

User’s manual - Functions 41

6. Programming Example PART 1 BASIC PROGRAMMING

YW002 (Mumerical Display Device) YWOO03 (Lamps) YWO004 (Motor)
Y0020) Y0030 | Fauilt Y0040 | Forward
21 | 00 31| Preparation complete 41| Reverse
22 32| Operating 42
23() 33] Operation complate 43
241 N 34 44
25 35 45
b %101
26 36 46
27| | a7 47
28| 38 48
29 L 39 49
2A X102 3A 4A
28|) 3B 4B
2CI 7 3C 4C
2D 3D 4D
& [3E 4E
2F| | 3F 4F

42 PROSEC T3

PART 1 BASIC PROGRAMMING 6. Programming Example

6.3
Sample program A sample program of this sequence are shown on the following pages.
When designing a program, arrange the conditions, and give them
careful thought so that the program will follow the flow of operations as
far as possible.

Here, the program is composed using basic instructions only. The
following is a simple explanation of the instructions used in this
program.

®
Input < + Cutput NO contact
Put output ON when the input is ON and the state of device & is ON.

®
input <4+ Qutput NC contact
Put output ON when the input is ON and the state of device @) is OFF.

Input -1 Output Transitional contact (rising) '
Put output ON only when the input at the previous scan was OFF and
the input at the present scan is ON.

®
lnput <+ Coil
Put device & ON when the input is ON, and put device (&) OFF when
the input is OFF.

Input &) TonTen |- Output ON-delay timer
After the input has changed from OFF to ON, put output ON after the
elapse of the time specified by (3. Also, at this time put the
corresponding timer relay ON. (the 0.1 second timer in the example on
the next page)

Counter

With the enable input in the ON state, count the number of times the
count input is ON and store in counter register Cnnn. When the values
of @ and Cnnn become equal, put output ON. When the enable input
is OFF, clear Cnnn and put output OFF.

Count input

CNT
Enable input ®Cnnn Output

Input{@s~ @ I-Output Binary conversion
When the input is ON, convert the value of BCD which has been stored
in (A to a binary number and store in (B.

Input {@sco @ J-Output BCD conversion
When the input is ON, convert the value of (& to BCD and is store in®.

Input{mes 1 Master control set/reset
Hwmem H Put the power rail between MCS and MCR ON only when the input of
MCS is ON.

User's manual - Functions 43

6. Programming Example

PART 1

BASIC PROGRAMMING

Operation Mode
Setting Part

Operating Sequence

reverse

X010 Roco
1 | 10 TON Toe4 |4 F ()J
1 second deiay Emergency Emergency
stop stop
ROOO X011
Fault reset
ROO0O ROO2 RO03 X018 R0O01
[l] 1 {

— | {)=
Emergency Stop Operating LSO Preparation
stop compleie
X0113 g Rloclls R1016 RO0C Ro02
_1 i M 11 ,r’r /H, {
Stop Operating] Stop Emergency Stop

complete stop
Roo2
l
{
X012 ROO1 RO14 RO02 ROO0 ROO3
] A
Start Preparation|Operation Stop Emergency Ope-
complete | complete stop rating
RCO3
| |
[
R0O3 r
— | LMCS
Cperating
—{T——{ xw00 BIN D 5000}
Numerical setting device
X019 RC10
— it e
LS1 Running
T.088 forward
Cycle
complete
RO10
X019 RO13
10 TON Tos5 |
LS1 Runningin 1 second delay
reverse
T.0|65 XIO}A RO11
_‘ [AT ()—
LS2 Running
RO11 forward
X01A RO13
20 TON T066 |
LS2 Runningin 2 seconds delay

When ‘Emergency stop’ (X010:
normally ON} is OFF, maintains
RO00 ON. ROQO is reset by ‘Fault
reset’ (X011) ON.

ON delay timer is to wait the
establishment of the emergency
stop signal.

When ‘operating’

(ROD3) is ON and ‘Stop’

(X013) is ON the stop mode
(R002) is ON. When ‘Stop
complete’ (RO16) is ON, R002 is
put to reset.

When ‘Preparation complete’
(ROD1)isONand ‘Sart’

{X012) is ON the operation mode
{RO03) is put ON. :
When ‘Operation complete’(R014)
is ON, R0O03 is put to reset,

When the operation mode {R003)
is ON, the MCS-MCR is executed.

The value of the nurnerical setting
device is binary-converted at the
beginning of the operation, and is
substituted in D500O0.

RO10 is put ON at the beginning of
the operation. R0O10 is reset by
LS1 (X019) being ON.
When'Cycle complete’ (T.068) is
ON also, in the same way, R010 is
put ON.

T.065 is put ON after LS1 (X019)
has been ON for 1 second.

When T.065 is ON, RC11 is put
ON and held. RO11 is reset by
L32 (X01A) being ON.

T.066 is put ON after LS2 (XO1A)
has been ON for 2 seconds.

44 pPrROSEC T3

PART 1 BASIC PROGRAMMING

Stop Sequence

T.066 XO01B RO12
11 [A {)_1
[rd {
LS3 Running
forward
RO12
X018 RO13
12 — 30 TON T067 |
LS3 Runningin 3 seconds delay
reverse
T.067 X018 RO13
13 — —34F { M
LSO Running
in reverse
RO13
X018 RO10
14 100 TON T088}
LS0 Running 10 seconds delay
forward
T.068 RO14
s— —— ont] { H
Cycle Operation
complete complete
| D5000 G000
16 (—{ C000 BCD YW02 |
Numerical display
17 —{ mMerH
ROQ2
18 ', {Mcs}H
Stop
X018
19— 10 TON Toes |
LSO 1 seconds delay
T.069 RO15
20 | | {
Running in
19 5T
21— b—— 10 ToNTo70 | (A
LSO 1 seconds delay Stop
complete|
22 [MCR}—

6. Programming Example

R o

When T.066 is ON, R012 is put
ON and held. When LS3 (X01B)
is ON, R012 is reset.

T.067 is put ON after LS3 (X01B)
has been ON for 3 seconds.

When T.067 is ON, R0O13 is put
ON and held. When LS0 (X018} is
ON, R0O13 is reset.

‘Cycie complete’ (T.068)is put ON
after LSO (X018) has been ON for
10 seconds

The number of completed cycles
are counted. When they equal the
value {D5000) on the numerical
setting device, ‘Operation
complete’ (R014) is put ON.

The count value (C000) is
converted to BCD and is outputted
to the numerical dispiay

When the stop mode {(R002) is
ON, the MCS-MCR is executed

When LSO (X018) is OFF, T.069
and R015 are put ON after 1
second. If LSO (X018)is put ON,
T.069 and RO15 are reset.

‘Stop complete’ (RO186) is put ON
after LS0 (X018) has been ON for
1 second.

User’s manual - Functions 45

6. Programming Example

Lamp Circuit

Motor Circuit

Program End

PART 1

RO0O Y030
23 [| {)
Emergency stop Fault
Roo1 Y031
2 | S
Preparation Preparation
complete complete
RO0O3 Y032
25 — | -
Operating Operating
R003 RO17
26 — (
Operating
RO0O
Emergency
stop
RO14 RO17 Y033
27— 1 { H
Operation Operation
complete complete
Y033

28

29

30

RO10 RO00 X01D

Y040

|

Running [Emergency Running
forward stop in revarse

RO11

|

Runnin
forwar
RO12

=

RG13 ROOC X01C

— s

S

Forward

Yo4a1

(>

Running inEmergency Running
reverse stop forward
R0O15

Running in
reverse

Reverse

—{ ENnD |

BASIC PROGRAMMING

When ‘Emergency stop’ (R000) is
ON, the 'Fault’ lamp (YO30) is put
ON.

When ‘Preparation complete’
(R0OO1) is ON, the ‘Preparation
complete’ [amp (Y031) is put ON.

When ‘Operating' (R003) is ON,
the 'Operating' lamp (Y032) is put
ON.

R017 becomes ON immediately
the operation mode (RO03) or
‘Emergency stop’ (R000) is put
ON.

When ‘Operation complete’ {RO14)
is ON, the ‘Operation complete’
famp (Y033) is put ON. When
RQC17 is on, Y033 is reset.

When R010, R011, or RD12is ON,
‘Forward’ (Y040) is put ON. This
is interlocked by the "Running in
reverse’ answerback (X01D).

When R013 or R014 is ON,
‘Reverse’ (Y041) is put ON. This
is interlocked by the ‘Running
forward’ answerback (X01C).

46 PROSEC T3

PART 1 BASIC PROGRAMMING

6. Programming Example

6.4

Programming procedure Here, the procedures for actually writing this program to the T3 using
the programmer (T-PDS) are shown. (An operational example of T-

PDS version 1.4)

(1) Turn the programmer power ON, startup the T-PDS by keying in

TPDS [Enter].

(T-PDS initial Menu Screen)

: Bata Mouitor
: Comments

: Docomentation

= 2 0O K W e

: Usage Map

S HE N

: Lsad/Save/Compare
: Setup Optioms

: (nline/Dffline

: Password

: Quit

s = [— | —

In the initial state, the T-PDS starts up in the communication mode
with the PLC (T3). Therefore, in the state when it is not connected
to the T3, “Receive time-out” is displayed on the screen.

(2) In order to carry out off-line programming, change to off line mode.
Select “L:Online/Offline”, key-in L.

: System Isforsation
Program

 Data Momitor

: GComents

¢ Docomentation

i lsage Map

==ﬂ:‘:.ﬂtﬂ

VIS MITE MEA,
: Load/Save/Compare
: Setup Opticns

: Passwerd
: fuit

y
T
0
L: g
N
]

Sl et mmy

N: Opline F:

Current mode is Online

FY FE Fi 1] b1 I

User’s manual - Functions 47

6. Programming Example

PART 1 BASIC PROGRAMMING

Here, select “F.Offline”.

Key-in F.
5: System Infermatien T: Load/Save/Cospare
P: Program 0: Setup Optioms
N: Data Momiter L: 58
C: Comments W:
D: Documentation Q: Qumit
U: Usage Map
Lil'\l'l fledue Foe ownehi by
A: Brive A B: Drive B [B: Drive D E: Orive E
" -
B M B e |
FI ¥ 13 H F3 ¥6 1] 3] 1£] Fig—

This sets the selection mode for the disk drive in which to create the
off-line work file. Here, select “C:drive C" by keying-in C.

: System Imfarmatiom
Program

: Dats Monitor

: Comments

: Docomentation

: Usage Map

HE“::IUW

T: Loasl/Save/Campare
0: Setup Options

¥
]

| —

15 11 F7 1) 13} 13

The programmer is now waiting for confirmation the creation of a

work file. Key-in Y.

T
§: System Inforsatien T: Load/Save/Cowpate
P: Program B: Setup Optioms

H: Datz Monitor L: 54

C: Comnents | H

3: Bocmentation Q: Quit

U: Usage Map

i beek VL b

48 PROSEC T3

PART 1 BASIC PROGRAMMING

6. Programming Example

Next, the PLC model will be requested. Select “1: T3” by keying-in 1.

S: System Infurmatien
P: Program

N: Data Momitor

C: Coments

0: Jecosentatisn

L]

T:

Load/Save/Compare

Sise seltines anta digk

OfFIine:C

FI ¥

] T8

The T-PDS mode is changed to offfine mode.
“Offline C: ” is displayed at the boitom left of the screen.

Since you are asked whether to record the settings, select “Y: Yes”.
By this means, the next time the T-PDS starts up, it will start up with
the work file in drive C as the target.

: System hfﬁmtlm
Program

: Data Nemitor

: Comments

: llucl.entatih)

: Usage Map

s
P:
]
C
b
0

IS MBI MY

o o - Q =

T Load/Save/Compare
: Setap Bptions

mivne TP e

Juit

v Tnter| kev

| oroe

User’s manual - Functions 49

6. Programming Example

(3) Next carry out the I/O allocation. From the initial menu state, select

“S: System information”. Key-in S.

<System Infarmation>

bl s h e et ey

: 1/0 Allecation
: Event Bistory
: Scan Time

: Sampling Trace
1 Status Larch

2 M = ™ tn

D: System Biagnosis
Eﬂnm Mansgement

Selert [owusing [T e 300 by iTnter] ke

! ne :
— | N
FT FZ T3 T 11 5 7 1 I] TN

Al press

Here, select “A: |/O allocation information”. Key-in A.

I PIES ST M

s: ¥
<System Infermation>

P: <1/8 Allocatism>

. P: System Parameters

M: Data Menitor EEM ¢ tincarian

C: Coments 1: Interrupt Assigmment
E: Event Bistory

D: Decomentation N: Network Assigmment
§: Scan Time

1: Usage Map
T: Samplimg Trace
L: Status Latch
D: Systea Diagmosis

M: Mesory Mamwewent

Sedert Dnomsimg [T o P Kevs

sl press fTmerl ke

i | T2] T T5 T6 7 TH 1£] T

Then, key-in A to select “A: I/O allocation™.

<I/0 Allocatiem>

—-Upit $@— —1nit #1-=-— —Init #2— —mit $3—

Slot 1M Skot 10 Slot v} Siet [¥]:]
Mmoo] e[1 [1 B I]
el 1 1 [1 11 1 1 [1
10 1 2 I 1 21 1 2 [1
21 1 3 [1 31 1 310)]
I 1 4 I] 210 1 11]
4 1 1 5 I 1 51 1 510]
§ I 1 5 [1 [3 1 6 I 1
s [1 i I 71 1 T I]
T 1 1 | I 1 8 1 oI 1
81 1 9 [1 LI 1 91 1
9 i 1 LI] LI | 1 1w [}

Offline

F1 FZ FI |- S 1 117 F7 TE 11] i

B0 PROSECT3

PART 1 BASIC PROGRAMMING

PART 1 BASIC PROGRAMMING 6. Programming Example
T

in offline programming, manual /O allocation is carried out.
Therefore, select F1 (Edit) on the command line. A cursor will
appear on the screen.

[1ol
L] Jo
S|un
] o
&
oow

4
P
]

4"1

S: 1Y B IXe¥ T: 7 8: SP

E: 168 F: 320 6: pAN H: 1208

pit #$1— —Init #2— =——imit 23—
o Slot /o Slot 1/8

H +
: arr
-

BH¥

—tnit 9—
Slat 1/0

"

DWW DAmUE LN S
. ey e g oy ey Py e g Py
ot et Nt et ot e bt bt Mt et
Booumamwms -
o ey e et P i 1 et
o e bt e bl e et e B i et

=

Mlozvenswnmred

e o e P e e P
Ml Bceuonawneed
| e ————————————
= N Rt b bl Y, et et Yo et Wt el

Because the module configuration has been decided in Section 6.2,
carry out the following settings as the input/output allocation.

----- Unit #0 -----
Slot I/O
PU []

0 [X2W] < DI334(32 pts input)
1 [Y2W] — DO334(32 pts output)
2 [Y1W] — RO3635(16 pts output)

To set the module type, move the cursor to the specified slot
position. Then designate by combining a function division (X, Y,
etc) and the number of the register occupied (1W, 2W, etc) from the
selection list displayed in the upper part of the screen.

First, move the cursor to Unit #0, Slot 0, using the cursor keys.
Then, key-in 1 to designate “1: X".

Vg 1: X 2:¥ XV 41X S: 0¥ 6 iXe¥Y T I B SP
M: @R S5: TL-S 0: TL-F P: OPT
A:IN B: 2% C:4¢ D: ¥ E: 16N F: 328 6: 68 B: 1288
—nit B —pit 31— ———Unit 42— —Upit #3—
Slot i/0 Slot 14 Slot L Slot 170
I 1 [1 a1 1 1 1
[] 10 1 11] 11]
11 1 2 [1 2 I] 21]
210 1 11 1 3l 1 i i
al 1 40 1 410 1 4 I]
4 [] 510 1 ! 1 51 1
51] 6 [1 5 1 1 61 1
6 [1 70 1 71 1 71 1
71 1 80] a1 1 [I 1
LI !] 30 1 9 1] 91 1
11 1 w I 1 80 1 19 1 1
R U R I e T s
%
OFfLine:C i
irite NN CHINEN Clear JENRY
F1 FzZ 3 H |3 T T 1] 3 TiE

User's manual - Functions 51

6. Programming Example PART 1 BASIC PROGRAMMING

Next, key-in B to designate “B: 2W".

G 1:% Y XY 4% S 6 {Xs¥7:ZI 9:5P
$: TL-§ 0: TL-F P: OPT
A: I B: 20 C:40 D: B E: 168 F: 328 G: 5AF RB: L2608
m=lnit #8— —mnit $1— —1nit #2— ——Hnit #3——
Slat 1/0 Siot 170 Slot /0 Slot 1A
i qu S S B O SR S
i 2 [1 21 1 N 1
2 i 1 110 1 30 1 3| [
3l i 4 0 | 41 1 q | i
4 I 1 5 [1 g0] 5[i
5[1 6 [1 5 [] 6 [1
6 [3 T 0 1 71] 710]
71 1 I} 1 [3 1 [1
[1 1 [] LI] g I 1
9 i 1 ® [1 h LI 1 3 [1
DHEN Tlear IRl
31 FZ T H 13:2 11 F7 T8 4] Tl

“X 2W” is displayed as the module type at the bottom of the screen.

Set the module type into the slot at the cursor position. Key-in [Enter].

CHAEE 1:X 2 ¥ 3 XY 41X S:8Y G IX¥7: I B SP
. ¥: MR S5: TL-S O: TL-F P: OPT .
A: ¥ B: 2% C:49 DB: W E: 16N F: 3% G: 630 B: 1288
——imjt ##— —mit #1— —e=elnil #$2mee— —1nit #3—
Slat 10 Slot 1/0 Slot /v Slat 10
PO | 1 9 [] BI 1 I} 1
=~ IR SO A A O T
2
2 1 3 [] I 1 31 1
31 1 4 [I I 1 4 [1
11 1 5 1 1 s I 1 5 (]
5 [1 5 I] 6 [1 6 1]
6 I 1 71)] 7 0] 71 1
11 1 8 { 1 8 [] 8 I 1
8 I 1 3 I 31 1 91 1
9 [1 w I } 1w I 1 W I 1
OFfline:C
Erite_ NN Clear
FI |3 T3 H F5 113 7 F8 3] F

“X 2W” is displayed at the Unit #0, Slot 0 position, and the cursor
moves to the next slot.

Hereafter, carry out the required settings using the same procedure.

G i: X ¥ 3 Xe¥ A: I S:i¥ B: BXe¥Y T: T B: 5P

M: MR 5: TL-S 0: TL-F P: OPT

A:IN B: 2% €:4V D: 88 E: 1SN F: 32N 6: 6N B: 1208
—nit $9—— —%kpit $1-—- —~—I\nit #2— —init #3—
Slot 17,1} Slet I/ Slot 170 Slot 1/0
||] [B 1 eI 1 I 1
[x 2] 10 1 11] 110 1
10 ¥ 23 2 [1 2 I i 2 I 1
2 [y) 3 [] 31 i al 1
3 [4 [1 41 1 4 [1
4 [J] 5 [1 510 1 510 1
5 [] 6 [1 6 { | 6 I 1
6 [1 710] 70 1 710 1
710 1 80 1 B [1 B I 1
[] 3 [1 9 I 1 3 I 1
3 [1 ®» I 1 B i 1 8 [1

ETHT finred

I FZ] H 5 ¥6 Fr & F§ FfH

52 PROSECT3

' PART 1 BASIC PROGRAMMING 6. Programming Example
-]

After completing required settings, write this information in the work
file. Select F5 (Write) from the command line.

Unit %8 Unit 1 Unit 82 tnit 43
Top ?qlsl:a- l]l-. Top l[lqister ilo Top lihqistur !]h Top ?egistu- llln

—ipit $&— ——lnit $1— —=lnit 42— —1lbit #3-—
Slot i Slot 1 Siot 7] Slot /0
M 1 P I 1 e[| 8 i]
B [x = 1 [1 10 i 110 1
I [¢ A 2 I 1 2 I 1 z 1]
2 [¥ W 310 1 3k 1 31 1
310 1 4 I 1 4 [1 41 1
4 [] 5 [I 5 1 1 50]
50 1 6 [1 6 [1 [31 1
B[1 71 1 7 [] 71 1
710 1 81 1 8 I 1 81 1
[1 9 [1 9 i 1 [| 1
s I 1 w I 1 [I 1B I 1

Fi ¥2 b H B 76 T 1] 1] TH

The programmer will wait for confirmation. Key-in Y.

nit 8 Unit #1 Unir 2 Unit #3

Top ?qlstu l]!u. Top l[!qister iln. Top l{lnustu' !]in Top ?qista- Sh
—-Init f#@&4— —lhnit $1---- —={njt - —Upit 83—
Slet im Slot 14 Slot 1/0 Slot 12

P [1 I 1 [I} 1 [I} 1

8 x a 1 [] 10 i 1 1

1 [¥ 21 2 1 1 z I] 2 [1

2 [v w 31] 11] 310 1

310 1 4 [1 LI 1 g [1

4 I] 5 [1 50 1 5 [1

5[] 6 I] 6 [] 6 [1

[1 710 1 70 1 710 1

71 1 [I3] 81 1 8 [1

110] LY 1 30 1 9 I 1

a1] 0 i 1 m [] m I 1
Tt Tine T 1/1]

o AutaSel [ETVETR Hision RITUHEL T oot c]
F1 FZ T3 3] 5 1] ¥E Fo i) “FIE

This completes the 1/O allocation.

User’s manual - Functions 53

6. Programming Example PART 1 BASIC PROGRAMMING
L]

(4) Now we enter the program typing phase. First, press the [Esc] key
to return to the initial menu.

Unit #9 Unit 21 Unit #2 Unit %3
Top ?a.lstu- 5‘“' Top :qlster l]h Top][Ielista' l]h Top ?qﬂ.st:r PIlo

—~-lnit $H— ——LUnit #1--— —nit ##2-— —it #3——

Slat 1/0 Slot 1 Slot 7] Slot 1/0
i | 1 | I 1 [2 | 1 8 I)]
[x 1 1 1[0 1 10 1
1 [¢ t I 1 20 1 21 1
2l Y W 3 i 1 il 1 31 1
11 1 4 1 1 41 1 4 [T
4 [1 51 1 5[1 51 1
5[1 6 [1 6 I 1 6 [1
i [1 T I 1 70 1 110 1
I 1 [I 1 I] 8 1
B[] 9 [| 9 I 1 31 1
31 1 w I 1 w I] I 1

|i' N: No

[] I

I 1P MOPT AL

- §: [T T: Load/Save/Conpare

P: Program 0: Sem DOptions

M: Data Maniter L: Mniine/0ffline

C: Comments N: Password

D: Docomentation Q: Quit

L: Usage Map

~ Selert i |01 o U 1;.-~-.: bl oreas Enter| hew
I I E Tral

F1 14 3 A] TS F7 1] £ LI

Here, select “P: Program”. Key-in P.

RO Nark (XECINN Hold |

F1 ¥z] 53 F5 5 F7 1] T3 T

54 pProOSECT3

PART 1 BASIC PROGRAMMING 6. Programming Example

Block 1 of the main program is automatically selected, and “Block:
M1” will be displayed on the screen.

Here, select F1 (Menu) from the command line.

-_—l

E: TRy N: Bata window §: Search and replace reference address
M: Momiter command F: Data formak I: Delmg

(13 $THH Flock: 3 1
— T —
FI 3 k3

M fs b F7 Fd& F9 T8

Then, select “E: Program Edit” from the menu window and key-in E.
A cursor will appear on the screen.

Here, select F6(Append) from the command line. Then, instruction
symbols will appear on the command line.

[Edge ERN Uigit |
[~ IR G U an

User’s manual - Functions 55

6. Programming Example PART 1 BASIC PROGRAMMING

Here, start typing in the program in Section 6.3.
First, press F7 (TON).

TON
¥: N: No
[{4 VETH Block: g 1 ¥
T

Fi ¥ 1) H FE Fb F7 Bij 1] i]

Since the programmer is waiting confirmation, key-in Y.

Input the operands (setting value and timer register).

Key-in

10 [Enter]

T64 [Enter]

If you make a mistake, cancel it with the Space key and re-input.
]
1

S Tine NETITON Tdce CEEN Uioit]
EEPSE 0 RGN Tndex EER

56 PROSEC T3

PART 1 BASIC PROGRAMMING 6. Programming Example

Next, input the NC contact of X010 (with vertical connection).
Key-in

F2 (<4+)

FS (i)

X10 [Enter]

ﬂmmm%-

Complete the 1st rung using the same procedure, as follows.
Key-in

F6 (- H) RO [Enter]

F1 (<) RO [Enter]

F2 (=) X11 [Enter]

F4 (-} [Enter]

F4 (-) [Enter]

Next, move to the head of the 2nd rung using the cursor keys, and
input the 2nd rung using the same procedure as for the 1st rung.
Then input the 3rd and 4th rungs.

User’s manual - Functions 57

6. Programming Example PART 1 BASIC PROGRAMMING

White doing this, when an instruction for which the symbol is not
displayed on the command line such as a transitional contact,

display the Menu Window by pressing Shift +F2 (Seq Inst), and then
select.

(Screen state when Shift +F2 (Seq Inst) has been pressed)

When input has been completed as far as the 4th rung, write the 1st
to 4th rungs into the work file.

In other words, the size of program which is writable to the work file
at any one time is one screen size (11 lines by 12 columns).

Therefore, this means writing to the work file at convenient divisions
of rungs.

(The cursor also will move within the screen limits in the Edit mode).
Carry out the operation of writing to the work file as follows:

{State with input up to the 4th rung complete)

o]
£ —

REae1
| { >—

ROBN: EA916 PODRS RODB2
it C—

ROGE1 E9814 RBPE2 ROS98 o k]
— —3t ¥t —{

OfF Fl i t] Ly enil
; MRACTEE Ivitv ERZFTE Ve RTTOE

L — TN SR TN R odex ancel

58 PROSEC T3

PART 1 BASIC PROGRAMMING 6. Programming Example

Key-in Shift + F6 (Write).

XBa1a oo

f ¢ i
m-mams m-
—

mzmlsm

—F { F—
mlnumz_ m-

j—' it { —
4

cchi:f 1 EIRNE TN T BRES

Cantro] FRNNE
FT 14 T)] T3 113 FT T8 9 FI8

Because the programmer is awaitihg confirmation, key-in Y.

X018]
100918 TON TRSI-}f ¢ —p
w o1 -
20000 ROGH? FOERY X0E10 poee) |
Bt { Y=
x8013 9083 ROUI6 RAAGA 0082
I~ it b—i—3t —

IBIZ '1 mu mz m |]

44"—‘“—'—'1 :l—n——rl—r {

Heinrf m T:m MR cveend BOEETE Chinge IR A0t
H ¥z F3 13 F5 F6 FT T8 £) I

in this way, the 1st to 4th rungs have been written to the work file.
Next, input the 5th rung onward. Move the cursor onto the 4th rung
using the cursor keys (the cursor can move over existing rungs
only), and press F6 (Append). The screen will then turn to an edit
screen with the 4th rung leading.

Fooa1 @14 nqagz o] Beon3

2| | ——. A L
| — ¥
] X
4

41 EBE
oninst [ENYES
P

User’s manual - Functions 59

6. Programming Example PART 1 BASIC PROGRAMMING

Move the cursor to the head of the 5th rung, and start entering the
program from there onward. -

To input the Function instructions such as BIN, key-in Shift+F3 (Fun
inst) to display Function instructions, then select the instruction
group which contains the desired instruction.

(Screen state when Shift+F3 (Fun Inst) has been pressed)

x8a12 RAAR) BRA1A ROMZ EARSA]
——tt— it ¢
peen3 |
REBA3
L s

(State when Shift+F3 (Convert) is pressed on the above screen)

o812 ROGA1 R3014 FORBZ Baes3
it F—tf—it <

E9883

03

—m..mm._mm] B -EL- [REE 17T | L]
Move RIS inyic l_-_lﬂ_ forate Wi \;mi | _ T

Hereafter, write the whole program using the same procedure.

60 PROSEC T3

PART 1. BASIC PROGRAMMING 6. Programming Example

(5) When the whole program has been written in work file in the
operation up to this point, load the program into the T3.

First, connect the T3 and the T-PDS with the dedicated cable. (This
assumes that the modules in Section 6.2 are mounted in the T3)

Nexi, put the RAM/ROM switch on the CPU to RAM, the operation
mode switch to the RUN position, and turn on power to the T3.
(The T3 will start up in the HALT mode).

(6) Put the T-PDS into communication mode with the PLC (T3).

First, return the T-PDS display to the initial menu by pressing [Esc]
[Enter], and then select “L:Online/Offling”.

PESCMEIE MY

i
$: System Inforsation T: Load/Save/Cowpare
P: Program 0
M: Data Mooitor L:H
C: Comments N:
B: Bocmentation G: Quit
U: Usage Map

Current sode is Dffline

N: F: OEFLine

‘OFfLIne:C ’
S NS BN BN M

FI ¥Z T3 T F5 FE F7 11] 4] I8

Here, select “N: Online” to select online mode. Key-in N.

|
$: Systes Informatien T: Lsad/Save/Compare
P: Program 0: Setmp Gptiems
M: Bata Monitor L: GREERIGGk
C: Comments R: Password
B: Docomentation Q: Quit
U: Usage Hap

Lot be cennection seads 7

O0FfLine:C

FI 1§ T3 T2 3 T5 F7)

User’s manual - Functions 61

6. Programming Example PART 1 BASIC PROGRAMMING

Confirm the connection state and key-in Y

|
§: System Information T

P: Program 0

M: Data Momitor L: BNk
C: Comments]

D: Decomentation Q: Quit

U; Usage Hap

Sz eosetiimrs ipto bl
'- Cere| -

. I T b | foncel |
FI T2 T3 H 11 113 i 3] F3~ IO

When the communication of the T-PDS with the T3 is correctly
connected, “PLC HALT" message will be displayed at the bottom
left of the screen.

Although the record of settings is not always required, here, select
“Y: Yes”.

Now the T-PDS has been changed to the online mode.

62 PROSECT3

PART 1 BASIC PROGRAMMING 6. Programming Example

(7) Next, clear the memory of the T3. Select “S:System Information”.

Key-in S.
R
s:
<Systes Inforsatiom>
P: Progrem
P: BRI
N: Data Momitor
' A: 1/D Allocation
C: Comments
E: Event Bistory
D: Decrmentatisn
S: Scap Time
U: Usage Map
T: Sempling Trace
L: Status Latch
iD: System Diagmosis
N: Nemory Mamegement
Tlone Tl Eevs annd nress ITaterf
F1 FZ F3 H 5 113 FT 13 i) T

Here, select “M: Memory Management” from the <System
Information> menu. Key-in M.

s .
p <Systea Inforsation>
’ P: System Paraseters

Y: Data Menitar :

A: 1/0 Allecation
C: Comments

E: Event Bistory
D: Jocomentation

$: Scan Time
U: Usage Map :

T: Ssmpling Trace

L: Status Latch

B:

M: ¥

Select b g

FELHALT EPHOG

TT FZ Fi 1§ 5 FE F7 i} 1] T

Next, select “M: Clear Memory” from the <Memory Management>
menu. Key-in M.

IS VILE MEML

S: B
<System Informatiom>
P: Program Hemory Hanegement>
P: System Parameters
H: Data Monitor E: Clear Event History
A: I/0 Allecation
C: Coments N: W
) E: Fvent Bistory
B: Docementation F: Clear Force
S: Scan Time
U: Usage Map R: Program Read
T: Sampling Trace {BAN « IE card/EEFRON)
L: Statms Latch W: Progras Rrite
(REN ~+ ID card/EEPRON)
D: System Biagnosis
|W , Clear Memary
¥: N: Ne

M M T [e
T TZ T3] 5 TE T W F T8

User's manual - Functions 63

6. Programming Example

The programmer will await execution confirmation. Execute Clear

by keying-in Y.
S:
<System Informatlon>
| <{Mesary Nanagement>
P: System Paraseters
N: E: Clear Event History
. A: 1/0 Allocation
C: L2
E: Event Bistory
B:) F:
S: Scan Tiae
B R:
T: Sampling Trace
L: Status Latch LH
B: Systewm Diagmosis
—

T —
1 1S S -~ W - i ¥ 2] TE

F7

(8) Next, transfer (load) the program which has been written in the work
file to the T3. First, display the initial menu by pressing [Esc][Enter],

and then select “T: Load/Save/Compare”.

T: B Y
Load/Save/Compars>
r 0: Setup Optims
: T
L: Online/DfFline
F: Norkflle—Disk
K: Password
B: PLC~~Disk
Q: Quit
wonl erees [Fnter] kew

Sebet bvousgiier 7] we [1] kavs

PLEEIRE (3515
I
F1 | 1 k] i F5 113 7 F& 13 b3

PART 1 BASIC PROGRAMMING

Here, select “P: PLC < Work File” from the <Load/Save/Compare>

menu.
: T GRS
Load/Save/Conpare>
b B 0: Setvp Options <PLC—MorkFlle>
o L: Onlive/0ffline |R: (REIENRENON
F: Norkflle—Disk
¥: Password L: Load{Hork-+PLL)
D: PLC—Disk
9: Quit C: Cospare(PLC++Nork)
Select Ineusimg [T ne jI! brve ol press Fpter | bew
N N W T
F1 ¥Z 3 i 33 F& L -1 R 3 b1

64 PROSEC T3

PART 1 BASIC PROGRAMMING 6. Programming Example
- __|

Then, select “L: Load (Work— PLC)” from the <PLC «+ Work File>
menu.

COPUS MODE MEN

T: sy
oad/Save/Compare>

P IR 0: Setup Optloes Load (Werk-FLC}>
o o L: Doliwe/Offline [P
F: Norkfile-+Disk

K: Passwerd B: Reyister/device data
B: PLC~—Disk

Q: Quit C: Comments

A: AlL

Select i msiwe DOU e VOl B gl oppss ITprpp | R

HEALT fPHA

FI ¥Z T3 H 3] T F7 Rl 111 TH

The selection menu for loading details is displayed. Sinceitis
simply the program in this example, select “P: Program & Sys Info”.

CLoad (Werk+PLC) /Program & Sys info>
Transfer T-PDS workflle's program anmd system infersatien te PLC.

FLC T-FBS

- [

PLCE R

I T RETTHIN
5] 1 T3] F5 113 F? 5] 1] T

The programmer will await execution confirmation. Key-in Y.

Lead (Rark~+PLC) /Program & Sys Info>
Trapsfer T-PIS workfile's program aml systes lnforsatien to FLC.

F1C T-FBS

% lnEn

W_ T I NEETEEN
F1 FZ T3 1]

1 113 1] F8 F3 3]

When correct loading has been carried out “Complete” Will be
displayed.

User’s manual - Functions 65

6. Programming Example PART 1 BASIC PROGRAMMING

(9) When the loading of the program has been completed by the above
operations, operate the T3 (RUN mode) and debug the program.
Here, try to change the T3 mode by the Control command of the T-
PDS. First display the initial menu by pressing [Esc] [Enter], and
then select “P:Program”.

The T-PDS will enter the monitor mode for the program which has
been loaded in the T3.

Here, select F9 (Control) from the command line.

Xem kuass
12 TON TEGLIF ull
RI000 XP011
ROGOR ROMOZ RORE3 XBu18)
; £ —
HO0E3 EGU16 R900A
— F——F { —
ROOR1 ROV RORAZ RAGRA]
F— F——3t—3t —(
{NCS TH

B: BUN F: Force HUN E: Error reset
C: BOLE cancel 0: DERUG

Block:y] 1

I]
i § T2 T3 H F5 1] F7 F | £]

- NOTE
VA

When the T3 is put into the RUN mode with the aim of program
debugging and test running, take thorough precautions for safety,
such as switching OFF the motive power circuit.

66 PROSEC T3

PART 1 BASIC PROGRAMMING 6. Programming Example

Select “R: RUN” from the menu window.

XBe10 RBO0G
I-BO8I TON TBGA}—HF —(—
? Xee1i
19008 DARG? MONGI Y18 28081
I—H————} g
w13 RGNI 20016 RO Re0B2
3 it Pt >—
i
a1z BBORE EBR1S 29RR2 .t]
4 it Pt € —|
MCS H

The programmer will await execution confirmation, Key-in Y after re-
checking the safety of the surroundings.

O8] B9E14 P02 RPEGE
i Yy

¥ ()—

Fi ji4 F3 1 TS 1§ F7 3] 1§ T8

“PLC: RUN” will be displayed on the screen. This is the monitor
screen for the program execution state.

Perform confirmation of operation by using the external simulation
switch and the T-PDS simulation input function (Force function).
For operation, see separate T-PDS operation manual.

When carrying out program correction/modification, stop the T3

temporarily (put into the HALT mode), and correct/modify the
program in the T3.

When carrying out creation/modification of the program while still in

the online mode, the operations are the same as in the offline
mode.

User’s manual - Functions 67

6. Programming Example PART 1 BASIC PROGRAMMING
L]

(10) When program correction and operation check are completed,
save the program in the disk and switch OFF the T3 power.

To finish with the T-PDS, press [Esc] [Enter] and select “Q: Quit” in
the state with the initial menu displayed.

The above completes the programming procedure. If the T3's
RAM/ROM switch is put to ROM and the Operation Mode switch is put
1o RUN (or P-RUN), the T3 will operate automatically when power is
next switched ON.

— NOTE
VA

In the case of a CPU with a built-in EEPROM (PU325), write the
program into the EEPROM before the above procedure (10).
The operation can be performed by selecting “W: Program Write”

| from the <Memory Management> menu. (See the screen on the
procedure (7}).

68 rrosec T3

PART 2
FUNCTIONS

PART 2 FUNCTIONS

1. Overview

1.1

T3 System configuration The T3 system configuration is shown in the figure below. Part 2
explains the T3 system functions, concentrating on the T3 CPU

functions.
Serial
T3 VE
- L l -
TOSLINE-S20
5 or 10 modules
. . A
Programmer Basic unit / N
(T-PDS)
PILICII T T [
S|FiP|/ L= |E| 1/
(RS232C) Ulo ! [0 6 or 11 modules
\— S| |F A
N
Expansion cabl P ! |
3 xpansion cable Y S i . /
Computer link O 0
Host (R5485)
computer I l -t
Pl1]1 11 | Expansion uni
..... xpansion unit
T3 T3 — S 6 é (max. 3 units)
TOSLINE-F10
T | l P | i
Remot —® c/> ''''' <I)
ermote
T2 IO
The internal block diagram of the T3 CPU is shown below.
| EEPROM (iC memory card
| wDT K-_ T
User User
! PF System || System program data l
l BOM RAM memory | [memory
! : B IJI_‘ {10 bus)
Programmer R3232C |«—»| Main |_|
ST processor [F] Liggme
Computer «— -— A .
) RS485 RTC LS| Language B
. > processor 2
| t g
. . o
I Switches} | LEDs =

The Main processor controls overall execution tasks. The Language
processor (LP) works as co-processor and executes the user program
(bit operation and word operation). These two processors work in

paraliel during scan operation.

User’s manual - Functions 71

1. Overview PART 2 FUNCTIONS

1.2
Functional tem Specification
specifications Control method Stored program, cyclic scan system
/O method Batch /O (refresh), Direct VO, or combination
Number of /0 points 1376 points (when 32 pts VOs are used)

2752 points (when 64 pts /Os are used)
Total space: 4096 points/256 words

SFC (Sequential Function Chart)
Ladder diagram {relay symbol+function block)

Programming language

Program capacity - - | 32k-steps (incl..comment space} (1 step=24bits)

Main memory: SRAM (battery back up}
Optional memory: EEPROM/IC memory card

Basic ladder instructions: 24, function instructions:201

* transfer (single length/double length/register table)

User * arithmetic calculation (single {ength/double length/binary/BCD)
Program * logical operation (single length/double length/register table/bit file)
Instructions * comparison {single length/double length, sign/unsign)

* program control (jurnp/FOR-NEXT/subroutine and others)

* function (limit/trigonometric integral/PID/function generator)

* conversion (ASCHI/BCD/7 segment other)

* Floating point operations

0.15 ysfcontact, 0.3 us/coil
0.9 ysftransfer, 2.25 ps/addition

Memory

Execution speed

Scanning system Floating scan/constant scan (interval: 10-200 msec. 10 msec units)

1 main program, 4 sub-programs
1 timer interrupt (2-1000 msec, 1 msec units}, § 1/Q interrupt

4096 points/256 words (X/Y, XW/YW, batch 1/O)
(1O, IW/OW direct I/O)

Auxiliary device/register | 8192 points/512 words (R/RW)

Multitasking

/O devicefregister

Special device/register | 4096 points/256 words {S/SW)

12 poi ; 00-T063: 0.01 sec
Timer device/register 512 points (T./T) ((-'rr?)64-T511: 0.1 s:c))

Counter device/register | 512 points (C./C)

User
data |Data register 8192 words (D)
Link device/register 8192 points/1024 words (Z/W) (for TOSLINE-S20)
Link relay/register 4096 points/256 words (L/LW) (for TOSLINE-F10)
File register 8192 words (F)
Index register I, J, K {total 3 words)
Retentive memory User specified for RW, T, Cand D
Diagnosis Battery level, I/O bus check, I/O response, /O registration, VO parity,
Watch dog timer, illegal instruction, LP check, others
RAS .}Monitoring - .| Event history record, scantime measument, others

Online trace monitor, force, sampling trace, status latch, single

Debugging step/N scan execution, break point, others

72 PROSECT3

PART 2 FUNCTIONS

2. Internal Operation

2.1
Basic internal
operation flow

The T3 basic operation flow chart is shown below.

Power on)

Y

System
initialization

RUN mode

Y Y

Peripheral Self-
Scan control support diagnosis

A

T3 performs system initialization following power on. If no abnormality
is detected, T3 proceeds the mode control processing.

Here, if the RUN mode transitional condition is fulfilled, the scan control
begins. The scan control is the basic function of the T3 for the user
program execution operation. And if the RUN mode transitional
condition is not fulfilled, T3 enters the HALT mode and does not
execute the user program.

The peripheral support processing is executed as background for
communicating with the programmer and the computer link.

Self-diagnosis is carried out in each processing. The above figure
shows the self diagnosis executed as background.

The details of these processes are explained in this section. Self-
diagnosis is explained in 5 RAS functions.

User's manual - Functions 73

2. Internal Operation

2.2

PART 2 FUNCTIONS

System initialization The system initialization is performed after power is turned on.
The following flow chart shows the sequence of processes explained

below.

@

@

CPU hardware check and
initialization -

'

Power-off time,
Power-on time record

Y

Power interruption
decisicn

!

Battery check

v

Initial toad

|

User data initialization

Y

User program check

Time from power on 1o completion of the
system initialization:
Approx. 2 seconds {without initial load)
Approx. 3 seconds (with initial load)

(D CPU hardware check and initialization
System ROM check, system RAM check and initial set up,
peripheral LS| check and initial set up, RTC LS| check, and
- language processor (LP) check take place.

@ Power-off time, Power-on time record
The last time the power was switched off is recorded in the event
history table, and the present date and time read from the RTC LSI
is recorded as power-on time. Also the present date and time are
set into the special register (SW007-SW013).

® Power interruption decision

In the hot restart mode (S0400 is ON), if power-off period is less
than 2 seconds, it is decided as power interruption. In this case,
initial load and user data initialization explained below will not be
carried out. (only when the last power-off occurred in the RUN

mode)

@ Battery check

The battery voltage is checked for the user program and the user data

backup. If the battery voltage is lower than the specified value a
message is recorded in the event history table ‘batt voltage drop’
together with the special relay battery alarm flag (SO00F) setting.

74 PROSECT3

PART 2 FUNCTIONS

® Initial load

2. Internal Operation

The initial load means the term for the transfer of the contents of the
user program and the leading 4k words of the data register (D000
to D4095), from the peripherai memory (IC memory card or
EEPROM) to the main memory (RAM), prior to running the user

program.

The initial load is initiated when the power is turned on, the operation
mode switch is in other than P-RUN and the RAM/ROM switch is

turned to ROM. .

The initial load is not performed if both the IC memory card and

the EEPROM are not present.

* When the IC memory card and the EEPROM are both present,
the IC memory card will become the transfer source.

The initial load is not performed if the user program is written in

the IC memory card or the EEPROM, but the contents are
destroyed (BCC error detection).

When the user program is not written in the IC memory card, the

EEPROM will become the transfer source.

® User data initialization

The user data (registers and devices) is initialized according to the
conditions in the following table:

Register/Device Initialization
Input registers/devices(XW/X) For forced input devices, the previous state is
maintained, the others are D-cleared.
Output registers/devices(YW/Y) For coit forced output devices, the previous state

is maintained, the others are O-cleared.

Auxiliary registers/devices (RW/R)

For registers designated as retentive and coll
forced devices, the previous state is maintained,
the others are O-cleared.

Special registers/devices (SW/S)

CPU setting part is initialized and the user
setting part is maintained.

Timer registersirelays (T/7.)

Counter registers/realys (C/C.)

For registers designated as retentive and the device
corresponding to the previous state is maintained,
the others are O-cleared.

Data registers (D) For registers designated as retentive, the previcus
state is maintained, the others are D-cleared.
If the Operation Mode switch is in P-RUN,
leading 4k words (DO0QO to D4095) are maintained.

Link registersirelays (W/Z) For forced link devices the previous state is
maintained, the others are 0-cieared.

Link relays (LW/L) For forced link relays, the previous state is
maintained, the others are 0-cleared.

File registers (F) All maintained

Index registers (1, J K) All O-cleared

User's manual - Functions 75

2. Internal Operation PART 2 FUNCTIONS

2.3
Mode control

*1) For the force function, refer to 5.11 Debug Support Function.
*2) For the retentive memory area designation, refer to Part 3,
Section 2.2.

@ User program check
The contents of the user program on the main memory (RAM) are
checked by BCC.

The T3 operation mode is selected.according.to the status of the
operation mode switch on the CPU module and mode change requests
from the peripherals (programmer, computer link, data transmission
system).

The T3 operation mode is basically divided into three; RUN mode,
HALT mode and ERROR mode. Also, within the RUN mode, other
than the usual RUN mode, RUN-F, HOLD and DEBUG modes mainly
for debugging are also available.

1 1 »
i >
: Operation mode switch : »| HALT mode
b e) .
~
__________________ | ; RUN mode :
i Mode change according to :
; commands from peripherals !
------------------ ! »! RUN-F mode |
| RUN mode
|
> HOLD mode :
I
l
>/ DEBUGmode | !
e
: Result of diagnosis t »(ERROR mode
__________________ |

76 PROSEC T3

PART 2 FUNCTIONS

2. Internal Operation

The following explains the operation of each mode, after which the
conditions {(mode transition conditions) are explained.

HALT:

RUN:

RUN-F:

HOLD:

DEBUG:

ERROR:

All external outputs are switched OFF, user program
execution and I/O processing are halted. in the HALT mode
the mode control is run periodically (every 50 ms), idle time is
shared to peripheral support and diagnostic control.
Externally this is the mode for creating/amending user
programs.

After initial load (where necessary), user data initialization
(where necessary), /0 module mounting check, user program
check, and scan mode decisions, T3 goes into the RUN mode.
Mode control, batch I/O processing timer update, and user
program execution are run repeatedly in the RUN mode.

This is called scan control. There are 2 scanning methods;
the floating scan repeats program execution continuously and
the constant scan repeats program execution in a fixed cycle.
Selection is called scan mode selection. Scan control is
explained in detail in 2.4.

This is the forced run mode. It differs from the above RUN
mode in that scan control begins even if the allocated I/0
modules are not actually mounted. (If other modules are
mounted instead, the mode will not run.)

Otherwise action is the same as the above RUN mode.

This is the scan temporary stop mode. Only the batch I/O
processing is run, the timer update and the user program
execution are halted. The scan mode continues from the
status previously reached.

The /0 module test can be performed by the data
monitor/set function.

This is the mode which may be used for program debugging
functions (single step execution, single rung execution, N
scan execution, breakpoint setting, etc).

in this mode, there are three sub-modes; D-HALT, D-STOP
and D-RUN.

For the DEBUG mode functions, see Section 5.11.3.

When an error is detected in one of the diagnostic checks
and operation cannot be resumed by the prescribed retry
action, T3 will enter this mode. In the ERROR mode the
output is completely OFF, only the error reset command is
effective from the programmer (ihe error reset command
takes T3 back to the HALT mode). Refer to 5 RAS Functions
for detailed diagnosis.

User’s manual - Functions 77

2. Internal Operation

PART 2 FUNCTIONS

The transition conditions for each mode are shown below.

¢« HALT mode transition conditions

Previous state OP mode
OP rmode transition factor after Note
OP mode | RAM/ROM | Mode SW transition
RAM —_ P
(Power off) OWEr On INZ
ROM HALT Power on IL, INZ
ERROR — —_ Command Error Reset HALT
Other than _ - RUN .. |Mode SW — HALT
above RUN/P-RUN {Command HALT
+ RUN mode transition conditions
Previous state OP mode
OP mode transition factor after Note
OP mode | RAM/ROM | Mode SW transition
ROM RUN Power on IL, INZ
(Power off) P-RUN Power on INZ
. RUN/ Power on
P-RUN (HOT restant)
RUN
— INZ
RAM HALT Mode SW — RUN
RUN/P-RUN |Command RUN INZ
HALT HALT |Mode SW — RUN IL, INZ
ROM RUN Command RUN IL, INZ
P-RUN Command RUN INZ
BUN Return to
HOLD — RUN/P-RUN |Command HOLD Cancel 9" | mode before
RUN-F
. HOLD
* RUN-F mode transition conditions
Previous state OP mode
OP mode transition factor after Note
OP mode { RAM/ROM | Mode SW transition
HALT RAM RUN/P-RUN | Command Force Run INZ
ROM RUN Command Force Run RUN-F |IL, INZ
P-RUN Command Force Run INZ
RUN-F Return to
HOLD — RUN/P-RUN | Command HOLD Cancel RUN O | mode before
HOLD
» HOLD mode transition conditions
Previous state OP mode
OP mode transition factor after Note
OP mode | RAM/ROM | Mode SW transition
RUN — RUN/P-RUN Command HOLD
RUN-F - RUN/P-RUN } Command HOLD HOLD
D-RUN — RUN/P-RUN | Command HOLD

78 PROSEC T3

PART 2 FUNCTIONS

2. Internal Operation

+ DEBUG mode transition conditions

Previous state OP mode
OP mode transition factor after Note
OP mode | RAM/ROM | Mode SW transition
HALT — RUN/P-RUN | Command Debug
D-HALT
b-STOP — RUN/P-RUN | Command D-HALT
Command initial
Command Continue
D-HALT - RUN/P-RUN INZ
Command Step
~tCommand Rung
— B-RUN
Command Initial INZ
Command Continue
D-STOP -— RUN/P-RUN
Command Step
Command Rung
HOLD — RUN/P-RUN |Command HOLD Cancet
N scan completed
Break point detected
Stop condition fulfilled
D-RUN — RUN/P-RUN D-STOP
Step exeution completed
Rung execution completed
Command Stop
RUN Mode SW — HALT
D-HALT —
RUN/P-BUN {Command HALT
RUN Mode SW — HALT HALT
b-STOP RUN/P-RUN [Command HALT
D-RUN - RUN Mode SW — HALT

*1) In the table, OP mode, RAM/ROM and Mode SW mean Operation
mode, RAM/ROM switch and Operation mode switch, respectively.

*2) — means the switch status is not related to.

*3) In the OP mode transition factor column, “Mode SW — XX" means
switching the Operation mode switch to XX position. And
“Command XX” means issue of the command XX from the
programmer.

*4) Switching the Operation mode switch between RUN and P-RUN will
not affect the operation mode. However, the protect state will be
changed accordingly. (Refer to Section 5.4).

*5) In the Note column, IL means initial load execution, and INZ means
the user data initialization.

*6) See Section 5.11.3 for the DEBUG mode functions.

User’s manual - Functions 79

2. Internal Operation PART 2 FUNCTIONS

The following diagram illustrates the mode transition conditions.

(Power on)

{RAM) or
{ROM) and [HALT]

Debug command
[D-HALTI

fForce RUN’

gy
3
_'

v

RUN-F

A

[HOLD]

{HOLD Cancel]

[—HALT] of [HALT)

Debug command [xx)
‘.:‘
4
(o]
T

[Error Reset]
[HOLDI
[HOLD Cancell

Debug command [xx1
Break point detect, etc.

¥

rHOLD)
— > HOLD ‘//

HOLD Cancel
/ 7

D-RUN

4

¢ 4 -
¥ P
PP

*1) --- means the ERROR mode transition.

*2) [—XX] means switching the Operation mode switch to the XX
position.

*3) [XX 1 means issuing of the command XX from the programmer.

*4) The setting status of the RAM/ROM switch and the Operation mode
switch at power on are indicated by (XX) and [XX], respectively.

80 PROSEC T3

PART 2 FUNCTIONS

2. Internal Operation

2.4
Scan control

As explained in 2.3, when the RUN mode transition conditions are
fulfilled, initial load {when necessary), user data initialization {(when
necessary), /O mouniing check, program check and scan mode setting
are performed, and scan control begins. In scan control, mode control,
batch /O processing, timer update and user program execution are
repeated. The following diagram shows the scan control flow chart.

|
| RUN mode transition conditions |
A

| aretulfilled
o — I _______ |
@ Initial load (when necessary) 0
@ }User data initialization (when necessary)
® I/Q mounting check RUN mode transition
l process
@ User program check
© Scan mode setting v
. A
® Batch I/Q processing
6] Timer update fiest scan
User program execution v
1\
@ Mode control
) Batch /0 processing
second scan and thenafter
l (repeated)
a Timer update
@ User program execution v

User's manual - Functions 81

2. Internal Operation

PART 2 FUNCTIONS

@ Initial load
When the RAM/ROM switch is in the ROM side and the Operation
mode switch is in the RUN position, the user program and the
leading 4k words of the data register (D0000 to D4095) stored in the
peripheral memory (IC memory card or the EEPROM) will be
transferred to the main memory (RAM) in accordance with the
following conditions.

The initial load will not be performed if both an IC memory card
and the EEPROM are not present. : S

When an IC memory card and the EEPROM are both present the
IC memory card will turn to the transfer source.

The EEPROM wilt be the transfer source if no user program is
written on the IC memory card installed.

Initial load wili not be performed if the user program is written in
the IC memory card or the EEPROM but the contents are
destroyed (BCC error detection). In this case, the T3 will enter
the ERROR mode.

Initial load will not be performed if the T3 is in the Hot restart
mode from power interruption.

@ User data initialization
User data initialization takes place. Refer to 2.2, System
initialization, for detailed initialization. User data initialization will not
be performed if the T3 is in the Hot restart mode from power
interruption.

® 1/0 mounting check
The I/O module mounting status is checked based on the I/O
allocation information. (Refer to details in 5 RAS functions)

@ User program check
BCC check will be performed on the user program in the main
memory (RAM). (Refer to 5 RAS functions for details)

® Scan mode setting
Setting of the scan mode (floating scan or constant scan) will be
performed. The scan mode is explained in 2.4.1.

82 PROSEC T3

PART 2 FUNCTIONS 2. Internal Operation

®, @Batch I/O processing
Data exchange between the I/O image table (I/O register/device)
and the I/O module will be performed based on the I/O allocation
information. Data exchange with the data transmission module
(TOSLINE-S20, TOSLINE-F10) will be also performed. The first
scan is input oniy.
Batch I/O processing is explained in 2.4.2.

@, @Timer update
The.activated timer.registers and the timing relays.{S0040-
S0047) will be updated. Timer update is explained in 2.4.3.

, @User program execution
User program instructions will be executed in sequence from the
beginning to the END instruction. The execution object is a main
program and sub-programs. ‘
In case of an interrupt program, when the interrupt is generated,
the corresponding interrupt program is activated immediately.
The user program execution control is explained in detail in
section 3.

®@ Mode control
Will check the Operation mode switch and for mode change
commands from the programmer and change the operation
mode. Also, scan timing control will be periormed by measuring
the scan cycle.

24.1
Scan mode In the T3, the scan mode enables select from floating scan and
constant scan.

The floating scan mode is that, immediately after one scan is complete
the next scan commences. |t is the shortest scan cycle but the scan
cycle varies according to the user program execution state.

The action of the floating scan is shown in the following diagram.

l scan cycle L scan cycle 1
|

| lModel O |T'|merl User program HModel o |Timerl User program || [
A

next scan begins immediately

User’'s manual - Functions 83

2. Internal Operation PART 2 FUNCTIONS

The constant scan mode has a specified time cycle for scanning. The
setup range of the cycle is 10-200 ms (10 ms units). Use this scan
cycle to avoid variation in scan intervals.

The action of the constant scan when the cycle is fixed at 50ms is
shown in the following diagram.

scan cycle (fixed at 50 ms) | scan cycle (fixed at 50 ms)

-‘lModel YO l.'l'lmer[User program | .lMode.I /O .I.T:merl‘. User program I : ’ .-

Scan mode selection will be performed by setting up the scan cycle in
the system information menu of the programmer.

To select floating scan, do not set up a scan time (leave blank).

With the constant scan, scan time can be set up within the range 10-
200ms (10ms units).

—NOTE
VA

In the constant scan, if the time for one scan exceeds a specified
cycle, it will turn to floating scan, and the constant scan delay flag
(special relay-S0008) comes ON. Also, when the scan time reverts
to within the specified cycle, the scan cycle will return to the original
constant scan.

[constant scan cycle l constant scan cycle |
] Mode l /O | Timer I User program ‘ | Mode I IO l Timer | User program I I Mode |
N Nt
immediately to the next scan returns to the constant scan

84 rrosec T3

PART 2 FUNCTIONS

2. Internal Operation

2.4.2
Batch I/O processing

The status of the external input signals will be read from input modules
onto the I/O register/device (XW/X). Output register/device (YW/Y)
status will be output to the output modules. This process takes place
before user program execution and is done in batches, hence named
batch 1/O processing. The object of the batch I/O processing is as
follows:

Batch input ... signals from input modules without i designation on 1/0
allocation and input registers/device (XW/X) which are not forced.

Batch output ... output registers/devices (YW/Y) corresponding to
output modules without i designation on I/O allocation '

Also, data reading/writing between the data transmission module

(TOSLINE-S20,TOSLINE-F10) and the link registers/relays (W/Z and
LW/L) will be performed in this process.

1/O register/device

XWO000 < | input module
XW001
YWwooz2 [> output module
YWO003

link register/device

W0000 link register atlocated
W0001 to TOSLINE-S20
W0002 < > TOSLINE-520
w0003
link relay
LWOOoD LOF| ... [LO1|LOOD link relay allocated
Lwoo1 L1F] ... [L11]L10 to TOSLINE-F10

TOSLINE-F10

Lwoo2 |L2F| ... |L21| 20
LWO0O03 [L3F| ... |L31|L30

~ -

User’s manual - Functions 85

2. Internal Operation PART 2 FUNCTIONS

scan

if we consider T3 operation simply from the viewpoint of external signal
exchanges, batch I/O processing and user program execution can be
considered to be repeated continuously, as shown in the following
diagram.

Y

latest input data incorporated in XW

Baich I/O processing [~~~ T\ YW data output externally

A Y

- {--YW data updated with reference to
Running user program ————- XW data

A

Basically, this has the advantage that high speed scanning is achieved
because the T3 CPU does not access to the I/O modules during user
program execution. Also it is easy to create program logic because the
XW data are not changed during user program execution. This method
is called the batch I/O processing method (refresh method).

There is also another method of T3 operation whereby I/O module data
exchange takes place during user program execution, using W/l
instead of XW/X, and OW/O instead of YW/Y. This method is called the
direct I/O processing method. [t is recommended that the I/O modules
used in direct I/O are inhibited from batch I/O (they have i specification
on I/O allocation) to shorten the time for batch I/O processing.

— _NOTE
VA

(1) Use the following criteria for batch 1/0O processing time.
input (XW) ---54 ps/register
Output (YW) -~ 43 ps/register
Link (W/LW) --- 30 us/register

(2) IO modules with i designation on I/O allocation (iX, iY, iX+Y) are
not part of batch 1/0 processing. Refer to Part 3 for I/O
allocation.

(3) Forced input devices (X), link register devices (Z), and link
relays (L) are not part of batch I/O processing. The force
function is explained in section 5.11.1.

(4) Refer to the data transmission module manual for the allocation
of the link register/relay (W/Z and L/LW) to the data transmission
module.

(5) With direct I/O processing, output will be in register units even
when the bit (O) is specified. Refer to Part 3 for direct 1/O
registers.

86 PRrROSEC T3

PART 2 FUNCTIONS 2. Internal Operation

2.4.3
Timer update The timer registers activated by timer instructions will be updated
(increased), and the timing relays (S0040-80047) will be updated.

* Updating timer registers

1omsecsysteminterupt § 4 b ¥ ¥ ¥ ¥ v ¥ ¥ V¥V VbV

I Tome] [Trom]

| | scan cycle ‘| [scan cycle |

-
P~ r il

| timer update cycle | fimer update cycle

]I |T|mer|

o
-

The number of system interrupts which occur during the timer update
cycle (= scan cycle) will be counted, and the counts will be added up in
the timer registers which are started up by the timer instructions (TON,
TOF, 8§, TRG).

The 10 msec interrupt is used for the 0.01 second timer (TO00-T063),
the 10 ms interrupts are accumulated and used for the 0.1 second timer
(T0O64-T511). The timer reset and the time-up processing will be
performed in the execution of the timer instruction.

Timer Timer register
classification (Timer device) Preset range Notes
0.01 second TOD0-T063 0-32767 On-delay timer (TON)
timer {T.000-T.063) {0~327.67 seconds) Off-delay timer (TOF)
0.1 second T0B4-T511 0-32767 Single shot timer (SS)
timer (T.0684-T.511) {0~3276.7 seconds) | Timer trigger (TRG)

*) Take the criteria for the time for performing the timer register update

as follows.

27 us/timer register (update time)

* Updating timing relays
The timing relays (S0040-S0047) ON/OFF status is controlled by
using the 10 msec system interrupt. The binary counter is
configured as shown on the next page. (When RUN is started up
they will be all OFF)

User’s manual - Functions 87

2. Internal Operation | PART 2 FUNCTIONS

$0040 (0.1 sec)

$0041 {0.2 sec)

L
S0042 (0.4 sec) | [| can

sososser | [| []
<0.8 sec—>|
somirosy 1 L1 L
0046 (40590 | I
50047 (8.0 sec) l——‘

Y

-« 4.0 sec

25
Peripheral support Peripheral support processing will interpret request commands from the
peripherals (programmer, computer link, data transmission module),
process the requests and responds.

In the T3, the Language processor (LP) takes charge of user program
execution. The peripheral support processing will be performed by the
main processor during user program execution in parallel.

User program execution (LP) User program

|

P e

Scan control Mode | O | Timer Mode |+~

Peripheral
support

*1) For commands which require accessing to user data, the command
interpretation will be performed in paraliel and the data accessing
will be performed at the bottom of scan at batch for data
synchronization.

*2) If two or more commands are received simultaneously from the
request sources, the order of priority will be as follows:
Programmer > Computer link > TOSLINE-S20(CH1) > TOSLINE-S20(CH2)

88 PROSEC T3

PART 2 FUNCTIONS

2. Internal Operation

2.6
Programming support
functions

The programming support functions are part of the functions realized as
a result of peripheral support processing. Detailed programming
support functions are explained in separate manuals for the
programmer. The explanation here relates to an overview of the
functions and their relation to the T3 operation modes.

(1) Memory clear
When the memory clear command is received, the content of the
. user program memory (RAM) will.be initialized and. the content of
the user data memory (RAM) will be cleared to 0.

(2) Automatic IO allocation
When the automatic I/O allocation command is received, the types
of I/0 modules mounted will be read and the 1/O allocation
information will be stored on the system information. (System
information is in the user program memory.)

(3) Reading the I/O allocation information
The I/0 allocation information will be read from the system
information, and sent to the peripherals.

(4) Writing 1/O allocation information
I/0 allocation information received from peripherals is stored on the
system information.

(5) Reading the system information
The system information (program ID, retentive memory
specification, number of steps used, scan mode specification, other)
is read and sent to the peripherals.

(6) Writing system information
The system information (user setup items) received from the
peripherals is stored in the system information.

(7) Reading the program
In response to a request from peripherals, a specified range of
instructions will be read from the user program memory, and sent to
the peripherals.

(8) Writing the program
A specified range of instructions is received from peripherals and
written onto the user program memory. After writing, the BCC
(check code) correction will be carried out immediately.

User’s manual - Functions 89

2. Internal Operation PART 2 FUNCTIONS

(9) On-line program change
Changing the content of the user program memory
(adding/changing/inserting/deleting) and the BCC correction will be
carried out in the RUN mode. This action is performed after
completion of one scan, so the scan cycle is extended while this is
being processed.

Changing the program on-line is subject to the following
resfrictions.

* You may not change the number or running order of instructions
which are related to the program execution (see below).

END, MCS, MCR, JCS, JCR, JUMP, LBL, FOR, NEXT, CALL,
SUBR, RET, IRET

* You may not change the SFC structure in the SFC program, but
you may change the action corresponding to a step and a
transition condition. (Ladder diagram part).

(10) Batch reading of program
The content of the user program memory (including the system
information) is read and sent to the peripherals.
It is used for the program uploading (T3 — Programmer — Disk).

(11) Batch writing the program
The user program (including the system information) is received
from peripherals and will be stored in the user program memory.
It is used for program download (Disk— Programmer — T3).

(12) Search
The instruction/operand specified by peripherals will be searched
through the user program memory and their address will be sent to
peripherals. -

(13) Program check
When the program check command is received, the user program
syntax will be checked. The result of this check will be sent to
peripherals.

(14) Reading data
The specified data will be read from the user data memory in
response to a request from the peripherals, and the data will be
sent to the peripherals.

(15) Writing data
User data address and data content received from peripherals will
be stored in the user data memory.

90 rROSEC T3

PART 2 FUNCTIONS 2. Internal Operation
___ e

(16) Program reading from the {C memory card/EEPROM
Whether the IC memory card is mounted or not and the EEPROM
is fitted or not will be checked. The checked IC memory card or
the EEPROM content will be transferred to the user program
memory and user data memory (RW, T, C, D) of the main memory
(RAM). [f the IC memory card and EEPROM are both present, the
IC memory card is used.

(17) Program writing to IC memory card/EEPROM
. Whether the IC memory.card is mounted.or.not.and the EEPROM
is fitted or not will be checked. If either exists, the content of the
user program memory and the user data memory (RW, T, C, D) will
be transferred to the IC memory card or EEPROM. if the IC
memory card and EEPROM are both present, the IC memory card
will be used.

The execution conditions for these functions are shown in the following
table.

Function Execution conditions
Reading I/O aliocation
information
Reading system information Always possible
Reading the program
Reading data
Batch reading the program Possible except in ERROR mode
Search
Program check
Program writing to IC memory Possible in HALT mode
card/EEPROM
Memory clear
Automatic I/O allocation
Writing 1/O allocation

information Possible in the HALT mode and
Writing the system information mode swiich other than P-RUN
Writing the program

Batch writing the program
Program reading from IC memory

card/EEPROM
On-line program change Possibie except in the ERROR mode
and except in P-RUN
Writing data Possible except in the ERROR mode,
-| however writing into DO000-D4095 is
prohibited in P-RUN
— NOTE
VA

If the password function is used, available functions are limited
according to the protect level of the password. Refer to 5.13 for the
password function.

User's manual - Functions 91

3. User Program Execution Control PART 2 FUNCTIONS

REFFRRRRFme - e e

3.1

Program types The T3 can run several different program types in parallel (this function
is called the multitask function). This function can be used to realize
the optimal response time for each application.

The programs are classified into the 3 types below. There are a total of
14 programs.

Main program (one)
This program. will be executed every.scan and forms the.main part of
the scan.

Sub-programs (4)

This program can be activated by other programs. A total of 4 (#1-
#4) are provided. (#1 is fixed function)

In the floating scan, the sub-program will be executed after the main
program execution with time limit (user setting). And in the constant
scan, the sub-program will be executed in idle time from completion
of the main program execution to the beginning of the next scan.

By means of sub-programs, the main program can be used as fast
scanning task, and the sub-programs as slow scanning
{background) tasks.

Interrupt programs (9)

When the interrupt condition is fulfilled, the T3 will stop other
operations and execute the corresponding interrupt program
immediately. A total of 5 are provided: one program which starts up
at specified intervals (Timer interrupt program), and 8 programs
which start up according to interrupt signals from /O modules with
an interrupt function (/O interrupt programs #1-#8).

By means of timer interrupt, time critical control can be achieved,
and by means of I/O interrupts, I/O responses can take place without
affecting the scan cycle.

The sub-programs and the interrupt programs execution method and
the execution conditions are explained in this section.

92 PROSEC T3

PART 2 FUNCTIONS 3. User Program Execution Control

3.2
Main/sub programs Four sub-programs (Sub#1 to Sub#4) can be registered. They will be
execution control executed according to the conditions described in the table below.

Sub#1 will be executed only once before the main program execution in
the first scan. The function of Sub#2 can be selected from the normal
mode or special mode. Sub#3 and Sub#4 are fixed in normal mode
function.
In the normal mode, the execution mode can be selected from one time

execution or cyclic execution.

No. Normal/special | One timefcyclic Operation
Subit N/A N/A Executed only once before main
program in the first scan. (after
IO processing)
Sub#2 | Normal mode One time mode | Executed when S0409=1.
when S0403=0 | when S0405=0 | S0409 is reset automatically.
Cyclic mode Executed once every specified
when S0405=1 | scans (SW042) during
S0409=1.
Special mode N/A Executed only once before main
when S0403=1 program in the first scan, instead
of Sub#1, if S0400=1 and the last
power off period is less than 2s.
Sub#3 | Normal mode One time mode | Executed when S040A=1.
only when S0406=0 | S040A is reset automatically.
Cyclic mode Executed once every specified
when S0406=1 | scans (SW043) during
S040A=1.
Sub#4 | Normal mode One time mode | Executed when S040B=1.
only when S0407=0 | S040B is reset automatically.
Cyclic mode Executed once every specified
when 80407=1 | scans (SW044) during
S040B=1.

*) Hereafter, the main program, and sub-program #1 to sub-program
#4 are referrered as Main, Sub#1 to Sub#4, respectively.

User's manual - Functions 93

3. User Program Execution Control PART 2 FUNCTIONS

The flags (special relays/registers) related to the sub-program
operation are summarized in the table below.

Sub No. Flag (Name) Function Note
Sub#1 | S0410 (Sub#1 executing) | 0: Not executing 1: Executing Status
Sub#2 | S0400 (Hot restart mode) | 0: Normal 1: Hot restart Setting
50403 (Special mode} 0: Normal 1: Special Setting
50405 (Sub#2 mode) 0: One time 1: Cyclic Setting
S0409 {(Sub#2 start) 0: No request 1: Start request | Command
SW042 (Sub#2 interval) | Scan number setting for cyclic mode | Setting
S0411 (Sub#2 executing) | O: Notexecuting 1: Executing Status
50415 (Sub#2 delay) 0: Normal 1: Delay Status
Sub#3 | 50406 (Sub#3 mode) 0: One time 1: Cyclic Seiting
S040A (Subi#3 start) 0: No request 1: Start request | Command
SW043 (Sub#3 interval) Scan number setting for cyclic mode | Setting
S0412 (Sub#3 executing) | 0: Not executing 1: Executing Status
50416 (Sub#3 delay) 0: Normal 1: Delay Status
Sub#4 | 50407 (Sub#4 mode) 0; One time 1: Cyclic Setting
S040B (Sub#4 start) 0: No request 1: Start request | Command
SWO044 (Sub#4 interval) Scan number setting for cyclic mode | Setting
50413 (Sub#4 executing) | 0: Not executing 1: Executing Status
S0417 (Subit4 delay) 0: Normal 1: Delay Status

*} In the above table, “Setting” means the user preset flag for execution
mode selection, “Command” means the user control flag for
activating the sub-program, and “Status” means the execution status
flag which can be monitored in the user program.

Subit1 operation Sub#1 wili be executed only once in the first scan before Main
execution. Therefore, Sub#1 can be used as the initial setting program
at the start of the operation.

HALT mode or system ‘
initialization First scan N Second scan

L.
r

A

Y
A
Y

Mode | Transition | I/O | Timer | Sub#1 | Main Mode| /O | Timer Main

94 PROSECT3

PART 2 FUNCTIONS

3. User Program Execution Control

Sub#2 special mode
operation

System initialization | First scan : . Second scan

If Sub#2 is set as the special mode (80403=1) and the Hot restart
condition is fulfilled (S0400=1 and recovery from power off less than 2
sec), Sub#2 will be executed once in the first scan before Main
execution. In this case, Sub#1 is not executed. Also, when the Hot
restart condition is fulfilled, the initial load and the user data initialization
will not be performed.

Sub#2 special mode can be used as the initial setting program for the
restart from power interruption.

{Hot restart)

Normal mode operation
(Sub#2, Sub#3, Sub#4)

Y
A
Y

Mode | Transition | /O | Timer | Sub#2 | Main Model| /O | Timer | Main

In the normal mode, the sub-programs wili be executed after the main
program execution with time limit. The time assigned for the sub-
program execution is different between in the floating scan mode and in
the constant scan mode.

In the floating scan mode:

The user sets the sub-program execution time in the system
information. The setting range is 1 to 100 ms (1 ms units). The
activated sub-program(s) will be executed within this time limit. If the
execution cannot finish within this time limit, the execution will be
interrupted and re-started in the next scan.

In the constant scan mode: ‘

The activated sub-program(s) will be executed in idle time from
completion of the main program execution to the beginning of the next
scan. if the sub-program execution cannot finish within this time limit,
the execution will be interrupted and re-started in the next scan.

There are iwo execution modes in the normal mode operation; the one
time execution and the cyclic execution.

In the one time mode, the sub-program will be activated when the
Sub#n start flag changes from OFF to ON.

In the ¢yclic mode, the sub-program will be cyclically activated every
designated number of scans during the Sub#n start flag is ON.

User’s manual - Functions 95

3. User Program Execution Control PART 2 FUNCTIONS

0

One time mode The sub-program start request is checked at each time of the main
program and the sub-program execution completed. [f two or more
start requests occur at a time, the order of priority will be as follows.

Sub#2>Sub#3>Sub#4

When the sub-program is activated, the start flag is reset automatically.

* Operation example in the floating scan

. Scan . Scan . Scan | ‘Scan ‘ Scan .
* >t >« > > >
Main !
A i ! .
1 I I
sup#2 | : : R
i I ! H I
N O T B
1 1 —-._‘- == : ¢ : ! l|
Sub#3 v {stopped) ’ | ! o
Lo T ' Lol T
Lo : A
Sub#4 v o I:I Lo E E E E
oo [o Ly i i
L rime it Lo A
1 1 Time limit | Lo v o
[} [1
‘ [T i ' : i E ! ! ' '
) V 1 ! \ | | | '
| ' ! ! | . : : i H | i
ov_Yo | ® |0 ® oo O % %
[1 1
Sub#2 start (S0409) | " - S J -
I [1
b } b o |
Sub#2 executing (S0411) ': ; : i o —
1 \ 1
| L [!
Sub#3 start (S040A) . . e —
I 1
I]
Sub#3 executing (30412) —j{ F . |
1 1
1
Sub#4 start (S040B) | '

i

Sub#4 executing (50413}

(D Start requests to Sub#2, Sub#3 and Sub#4 from Main
@ Sub#2 activated

® Sub#2 completed and Sub#3 activated
@ Sub#3 interrupted and next scan started
® Main completed and Sub#3 re-started
® Sub#3 completed and Sub#4 activated
@ Sub#4 completed and next scan started
Start request to Sub#3 from Main

© Sub#3 activated

@ Sub#3 completed and next scan started
@ Start request to Sub#2 from Main

@ Sub#2 activated

@3 Sub#2 completed and next scan started

96 PROSECT3

PART 2 FUNCTIONS 3. User Program Execution Control

» QOperation example in the constant scan

. Scan(constant) ~ Scan (constant)

[y »

Scan (constant}

e
P g

4

Main I
o o : :
1 ' 1 4 1 t
£ 1 1 1 i
Sub#2 ‘ v : i
\ ! 1 1 1
1 1 H 1 !] 1
i Pt . 1 1 |
Supks . | o e
: : H : H [i
Subi#4 i ' i i E D {stopped) |
A Lo T !
1 1 : ! ! 1]
AR b | !
O @ @ @ i ':@ @\ @
)] 3]
P b : !
¥ v ! i : ! !
: ' k | '
Sub#2 start (S0409) — — : ;
! 1 1 H)
1]
Sub#2 executing (S0411) 1 ¥ ;
1 1
Sub#3 start (S040A) ;[I, ¥ :
1 1
Sub#3 executing (S0412) ’I l :
1
Sub#4 start (S0408B)] u
Sub#4 executing (S0413) r_—l—_

(D Start request to Sub#2 from Main

@ Sub#2 activated

@ Sub#2 completed

@ Start requests to Sub#3 and Sub#4 from Main
® Sub#3 activated

® Sub#3 completed and Sub#4 activated

@ Sub#4 interrupted and next scan started
Sub#4 re-started

© Sub#4 completed

User’s manual - Functions 97

3. User Program Execution Control PART 2 FUNCTIONS

Cyclic mode While the start flag is ON, the sub-program will be executed once every
designated number of scans. The order of execution priority is as
follows:

Sub#2>Sub#3>Sub#4

The start flag should be controlled (ON/OFF) by the user program. [f
the sub-program execution cannot be completed within the designated
scans, the delay flag {80415, S0416, S0417) is set to ON.

* Operation éxample in the floating scan

n n+1 o2 . n+3 - n+20

Scan counts e | e | —

|

o
>

L] L]
i 1
I 1
Il 1
1 1
1 1

1

PRy Sy 4
-——fm——

I
1
|
i
3
1

N

Main |

Sub#2 (every 3 scans)

T

0
L

|
i
1
e e "
Sub#3 (every 8 scans) ’: ! [j(_Stopped). Lo
! : v T . I
Sub#4 fevery 20 scans) Py ; ': E i i D
®.i,é? i@ @Q@ ®! 1@ @10 @@
Subk2 start (S0409) [} B HIARY) T
: : I_I : ! m : : 11
Sub#2 executing (S0411) v - s — I L
Sub#3 start (S040A) o] v) i i b)) B
Sub#3 executing (S0412) — 4 [L " | ' :
Sub#4 start (5040B) | " b)) N vy
Sub#4 executing (S0413) M R I

(D Start requests to Sub#2, Sub#3 and Sub#4 from Main
@ Sub#2 activated

(® Sub#2 completed and Sub#3 activated

@ Sub#3 interrupted and nexi scan started

® Sub#3 re-started

® Sub#3 completed and Sub#4 activated

@ Sub#4 completed

Sub#2 activated in the first scan of next 3 scans
® Sub#2 completed

{0 Sub#3 activated in the first scan of next 8 scans
@ Sub#3 completed

@ Sub#4 activated in the first scan of next 20 scans
@ Sub#4 completed

98 PROSECT3

PART 2 FUNCTIONS 3. User Program Execution Control

« Operation exampie in the constant scan (Sub#3 and Sub#4 are

omitted)
'oon n+1 n+2 . n+10 n+11 n+12
Scan counts :<—>:<—-—--—-—>{<—>. e e]
| : : g ! : .
H 1 [l H T] [l N
Main :. J I:
‘ ! i ;__@L___@@:____@:’n' v ' l___@_:@:___@l’.
Sub#2 (every 10 scans) Lo l(slfp_pt_ad_):l_i(ftgpfﬁd)- '-(W)Lj(_stfgp_ef):
[1 : 1
Ofe) @ ® ® |
A L ' !
Sub#2 start (S0409) —— ¥ v ¥ v
Sub#2 executing (S0411) ——— Y [I—

@D Start request to Sub#2 from Main
@ Sub#2 activated

@ Sub#2 interrupted

@ Sub#2 re-started

® Sub#2 interrupted

® Sub#?2 re-started

@ Sub#2 completed

Sub#2 activated in the first scan of the next 10 scans
@ Sub#?2 interrupted

®© Sub#?2 re-started

@ Sub#2 interrupted

@ Sub#2 re-started

@ Sub#2 completed

User’'s manual - Functions 99

3. User Program Execution Control PART 2 FUNCTIONS

3.3
Interrupt programs When the interrupt condition is fulfilled, the T3 will stop other operations
execution control and execute the corresponding interrupt program immediately. As
shown below, you can register one timer interrupt program which starts
up according to an interval setup in system information and 8 /O
interrupt programs which start up according to interrupt signals from /O
modules with an interrupt function.

Interrupt program Operation
- Timer interrupt . Activated according to the. interrupt interval setup.in system information.
The interrupt interval is set at 2 to 1000 ms (1 ms units)
HO interrupt #1 /O interrupt programs are activated by interrupt signals generated from
-I/Q interrupt #8 YO modules with interrupt function
| set interval , set interval
Interrupt conditions o T >|
Timer VO #1 Timer VO #4 YO #2 Timer
Vo I
Scan Scan . ; Scan Scan 1 Scan < Scan >

Scan control

T
|
3
T
]

Timer interrupt []

T

/O interrupt #4 Ij

(1) Interrupt priority
When several interrupt conditions occur simultaneously, the
programs will be executed in the order of priority shown in the
following table (the lower the numericai value the higher the level of
priority). Also, if other interrupt conditions occur during an interrupt
program execution the interrupt conditions will be put on hold, and
after the interrupt program execution is completed, they will be
executed in priority order.

100 PrOSEC T3

PART 2 FUNCTIONS 3. User Program Execution Control

oA T T

Interrupt program Priority levei Priority in class
Timer interrupt o —

/O interrupt #1 0 (initial value)
I/0 interrupt #2 1 (ditto)

I/Q interrupt #3 2 (ditto)

/O interrupt #4 1 3 (ditto)

/O interrupt #5 . 4 (ditta)

I/O interrupt #6 ' 5 (ditto)

I/O interrupt #7 6 (ditto)

I/O interrupt #8 7 (ditto)

The timer interrupt has the highest level of priority, followed by the
i#Q interrupt programs in order.

With respect to the level of priority for 1/O interrupt, the I/O interrupt
from the module nearest the CPU has the highest level of priority.
Refer to (3) below regarding the correspondence between interrupt
programs and I/O modules.

(2) Interrupt enable/disable
You can switch between interrupt disable and enabie by using the
DI instruction (interrupt disable) and El instruction (interrupt enable).
By executing the DI instruction, the interrupt conditions which occur
during interrupt disable mode will be put on hold; these will be then
executed instantly when the interrupt enable mode is entered by
executing the El instruction. (DI and El should be used in a pair)
Also, in transition to RUN mode, the interrupt will be disabled in the
first scan. It will be enabled automatically from the second scan.

(3) Allocation of 1/O interrupt program
The I/O interrupt with the lowest number corresponds to the 1/0
module with interrupt function nearest the CPU, in the initial state.
This allocation can be changed. See Part 3 Section 2.3.3.
There are no restrictions on the mounting position of /O modules
with the interrupt function.

—_NOTE
VAV

The /O interrupt response time (from the time interrupt conditions
arise until interrupt program starts up), with normal interrupt enable
and no other interrupt program started up, is an instruction
execution time +500 us in worst case.

User’s manual - Functions 101

4. Peripheral Memory Support Functions

PART 2 FUNCTIONS

4.1
EEPROM support

When the built-in EEPROM type CPU moduie (PU325) is used, the
contents of the user program and the register data can be stored in the
EEPROM. They can be read into the main memory (RAM) by the initial
load function or programmer operation. Also, the data registers (D)
stored in the EEPROM can be accessed from the user program.
EEPROM makes it possible to run without battery, and recovery is easy
in the event of a program being destroyed. .

The following functions are. available with EEPROM.

Function

Details

Conditions

Program write into
EEPROM

Wirites the contenis of the user
program (including the system
information} and the data
registers {D), the timer registers
(T), the conuter registers (C)
and the auxiliary relay registers
(RW) in the main memory
(RAM) into the EEPROM.

Performed by the ‘Program write
(RAM—IC card/ EEPROMY’
command from the programmer in
the following state.

- HALT mode

- IC memory card is not mounted

Program read from
EEPROM

Transfers the contents of the
EEPROM to the user program
memory, the data registers
(D), the timer registers (T), the
counter registers (C}), and the
auxiliary relay registers (RW)
in the main memory (RAM).

Performed by the ‘Program read
(RAM +—IC card/ EEPROM)’
command from the programmer in
the following state.

- HALT mode

- IC memory card is not mounted

- Mode switch is other than P-RUN

Initial load

Transfers the contents of the
EEPROM to the user program
memory and the leading 4 k
words of the data registers
(D0OO0O to D4095) in the main
memory (RAM).

At system initialization:
- IC memory card is not mounted
- RAM/ROM switch is in ROM
- Mode swilch is in other than P-RUN

At transition to RUN mode:
- IC memory card is not mounted
- RAM/ROM switch is in ROM
- Mode switch is in RUN

Read/write the data
registers in
EEPROM

Reads the data of data registers
in EEPROM and stores in the
main memeory by user program.
Writes the specified data of the
main memory into the data
registers in EEPROM by user
program.

Accessed by Expanded data
transfer instruction (XFER)

NOTE

VAV

(1) Refer to 2.2, System Initialization and 2.4, Scan Control, with
respect to the initial load function.

(2) The number of times the EEPROM can be written will be fimited by
the hardware to 100,000 times. The T3 counts the number of times
the EEPROM write is performed. If the 100,000 times is exceeded,
the EEPROM alarm flag (S0007) wilt come ON. However, this
checking is not effective for data writing by XFER instruction. ltis
recommended to check it by user program for the XFER instruction.

102 PROSECT3

PART 2 FUNCTIONS

IC memory card support

4.2

4. Peripheral Memory Support Functions

When an IC memory card is installed in the CPU module, the user
program and data can be loaded/saved, in the same way as the
EEPROM support function. |t facilitates program batch changes and

copying etc.

Also, an IC memory card can be used as user data expansion area

(expanded file register).

The following functions.are available with the.IC memory card.

Use type Function Detaiis Conditions
Program |Program write | Writes the contents of the Performed by ‘Program write
auxiliary |into IC memory | user program (including the | (RAM—IC card/ EEPROM)’
memory card system information) and the | command from the

data registers (D}, the timer | programmer in HALT mode.
registers (T), the counter
registers {C) and the
auxiliary relay registers (RW)
in the main memory (RAM)
into the IC memory card.
Programread | Transfers the contents of the . Performed by "Program read
from IC memory | IC memory card to the user | (RAM —IC card/ EEPROM) ’
card program memory, the data | command from the
registers (D), the timer programmer in HALT mode
registers (T), the counter and mode switch at other
registers (C), and the than P-RUN.
auxiliary relay registers (RW)
in the main memory (RAM).
Initial load Transfers the contents of the | At system initialization:
IC memory card to the user - RAM/ROM switch is in
program memory and the ROM
leading 4k words of the data | - Mode switch is other than
registers (D000O to D4095) P-RUN
in the main memory (RAM). 1",/ ransition to RUN mode:
- RAM/ROM switch is in
ROM
- Mode switch is in RUN
Expansion |Sampling trace | Stores trace data when the | Used with the sampling trace
memory |buffer sampling trace is executed. | function when the MMR
allocation is set in the CPU
slot.
Expanded file Reads/writes the data in the | Accessed by the expanded
register IC memory card (120k data transfer instruction
words) as expanded file {(XFER} when the MMR
registers from the user allocation is set in the CPU
program. slot.

*1) Refer to 2.2, System initialization and 2.4, Scan Control, for the

initial load function.

*2) Refer to Section 5.9 for the sampling trace function, and Part 3
Section 4.2 for the MMR allocation.

User’s manual - Functions 103

5. RAS Functions

PART 2 FUNCTIONS

5.1

Overview The meaning of RAS is Reliability, Availability and Serviceability. The
RAS function is the general term used for the functions instalied in the
T3 which increase the reliability and serviceability of the applied
systems and support the operation of the system.

5.2
Self-diagnosis

This section explains the self-diagnostic functions, maintenance
functions, the debugging functions installed in the T3, and the system
diagnostic function which can be used by the T3 user.

The details of the self-diagnosis which are designed to prevent
abnormal operation, the timing of the diagnosis and behavior when
malfunctions are detected are shown below.

In building up a system, consider the system operation safety in case of
the T3 shutdown (fail safe) and the system operation backup function.

In the following explanation, error registration means the storing of the
details of the error and the time when it occurred on the event history
table; error down means that all the outputs turn OFF and ERROR
mode is entered; alarm means that the error is registered, the special
relay is set, and running is continued.

(1) Diagnosis at system initialization (when power supply is turned on)

ltems

Diagnostics details

Behavior when error detected

System ROM BCC
check

The correctness of the system
ROM is checked by BCC.

Error registration takes place,
FAULT and I/O LED flash.
(Programmer communication
impossible)

System RAM check

The system RAM read/write is
checked.

Error registration takes place,
the FAULT LED flashes.
(Programmer communication
impossibie)

Peripheral LS|

Peripheral LSl is checked for

Error registration takes place,

check normal initialization. {Read the FAULT LED flashes, the
back check) I/O LED lights up. (Programmer
communication impossible}
LP check LP (language processor) is Error registration takes place,
checked for normal ERROR mode is entered.
-| initialization. {Error reset command invalid)
User program The correctness of the content | Error registration takes place,

memory check

of the user program memory is
checked by BCC. {Checked
after initial load when
peripheral memory is present)

ERROR mode is entered.

User data memory
check

The user data memory
read/write is checked.

Error registration takes piace,
ERROR mode is entered.
(Error reset command invalid)

104 PROSEC T3

PART 2 FUNCTIONS

5. RAS Functions

Peripheral memory
check

The correctness of the
peripheral memory (IC
memory card or EEPROM) is
checked by BCC.

Error registration takes place.
ERROR mode is entered.

RTC LS| check

The validity of the data read
from the RTC LS| (date and
time) is checked. The data is
set in the special register.

Alarm. Until reset, the date
and time daia (in the special
register) are HFF.

Battery check

The voltage of the memory
backup battery is checked.

Alarm. If the user program
memory BCC is normal, it will
start up normally.
(However, user data in the
retentive memory specification
is not guaranteed.}

(2) RUN start-up diagnosis

Items

Diagnostics details

Behavior when error detected

I/O verify check

The I/Q allocation information
and the /O modules mounted
are verified, to check that they
agree.

Error registration, error down.
However, when start-up is
activated by a command from
the programmer, a message
will the displayed. it remains
in HALT mode and no error
registration will take place.

{/O bus check

Checks that /O bus is normal.

Error registration, error down.
However, when start-up is
activated by a command from
the programmer, a message
will be displayed. It remain in
HALT mode and no error
registration will take place.

Expansion unit
power check

Checks that power of
expansion units is normal

Error registration, error down.
However, when start-up is
activated by a command from
the programmer, it wili remain
the in HALT mode and no error
registration will take place.

I/O response check

Checks that response when
I/0 modulie is accessed is
within specified response time
limits.

Error registration, error down.
However, when start-up is
activated by a command from
the programmer, a message
will be displayed. It remain in
HALT mode and no error
registration will take place.

Program check

User program syntax is
checked.

Error registration, error down.
However, when stari-up is
activated by a command from
the programmer & message
will be displayed. It remain in
HALT mode and no error
registration will take place.

User's manual - Functions 1 05

5. RAS Functions

PART 2 FUNCTIONS

(3) Diagnosis during scan

ltems

Diagnostics details

Behavior when error detected

110 bus check

Checks that 1/O bus is normal.
(at batch 1/O processing)

Error registration then error
down.

{However, if recovered by
retries, only registration will
take place; no error down.)

Expansion unit
power check

Checks that power of
expansion units is normal.
(at batch I/O processing)

Error registration then error
down.

{ (However, .if recovered by. -

retries, only registration will
take place; no error down.)

I/O response check

Checks that response when /O
module is accessed is within
specified response time limits.
(At batch 1O processing and at
direct I/O instruction)

Error reqistration then error
down.

(However, if recovered by
retries, only registration will
take place; no error down.)

/O bus parity check

Bus parity is checked when
the 1/0 module is accessed.
(At batch 1/O processing and
direct l/O instruction)

Error registration then error
down.

(However, if recovered by
retries, only registration will
take place; no error down.)

LP function check

Test program run in LP
(language processor) and
checked for correct results.
(When running the user
program)

Error registration then error
down.

{However, if recovered by
retries, only registration will
take place; no error down.)

LP illegal instruction
detection check

Checks whether or not illegal
ingtruction is detected in LP
(language processor}. (When
running the user program)

Error registration and then
error down.

Scan time over
check

Checks that scan cycle does
not exceed set value (200ms).
However, set vatue can be
chaged by user instruction
(WDT). (When running the
user program)

Error registration and then
error down.

106 PrROSECT3

PART 2 FUNCTIONS

5.

RAS Functions

(4) Diagnosis in any mode (executed in background)

ltems Diagnostics details Behavior when error detected
System ROM BCC | The correctness of the system | Error registration and then
check ROM is checked by BCC. error down.

{Error reset command invatid)

System RAM check

The system RAM read/write is
checked.

Error registration and then
error down.
(Error reset command invalid)

read/write checked.

Peripheral LSI Peripherat LSI setting status. | Error registration and then
check is checked. error down.
(Error reset command invalid)
Watchdog timer Watchdog timer system Error registration and
check runaway check. transition to ERROR mode
(Set at 350ms) after system reset.
User memory check | User memory (RAM) Error down after error

registration (with retry)

LP check LP (language processor) Error registration and then
] read/write is checked. error down.
Battery check Memory backup battery Alarm
voltage checked.

RTC LSl check

Date and time data read from
RTC LS every 300ms, validity
checked, data set in special
register.

Alarm. Until reset, date and
time data are HFF.

NOTE

VAV

Refer to the separate T3 User’'s Manual-Hardware, for details of

troubleshooting.

User's manual - Functions 1 07

5. RAS Functions

PART 2 FUNCTIONS

5.3

Event history When an error is detected by the T3 diagnosis, the details and time of

occurrence will be registered in the event history table (besides errors,
the times power ON/OFF are also registered). The 30 most recent
occurrences of errors can be registered in the event history table. As
new data is registered, the data registered previously will be shifted
down in sequence, and the oldest data will be deleted.

Use the event history table for maintenance information. It can be
displayed on the programmer as below... The contents of the event
history table are remained until executing the event history clear
command or the memory clear command from the programmer.

Givent Bistery>
Bate Time Event Comt Info 1 Info 2 Info 3 Mode
1. 94-85-88 16:56:82 System power 1 INIT.
2. 94-85-88 16:55:25 Systew power off 1 ALY
3. 94-84-81 21:55:24 Systee power om 1 INIT.
4, 94-94-81 21:54:52 System power off 1 EREOR
5. 94-84-81 21:5:21 18 no ansuer 5 te8-41 Ywea2 MN e
6. 34-84-81 17:11:88 Systes power on 1 INIT.
7. 94-94-81 17:05:12 System power off 1 BALT
:. 34-84-81 19:42:16 No END/IRET error 1 M-8l ‘HALT [HOS
10,
11,
12.
13.
14,
15.
st T
FT FZ) H 3 F& F7 F§F3 T

The meaning of each item on the screen above is as follows.

(1) Number (1-30)
Indicates the order of occurrence. Number one is the most recent.

(2) Date (year-month-day)
Indicates the date of occurrence. This is shown as “??-??-77" if the
RTC LS| is abnormal.

(3) Time (hours: minutes: seconds)
Indicates the time of occurrence. This is shown as “??7:7?2:?2?" if the
RTC LSl is abnormal.

108 Prosec T3

PART 2 FUNCTIONS 5. RAS Functions

{(4) Event
Indicates the sort of error detected. (System power on and system
power off are also registered.)

(5) Count
indicates the number of times the error was detected. For example,
an error is detected during a process, the retry is repeated 4 times,
the malfunction does not change and it goes to error down. This is
indicated as count 5 and DOWN will be displayed under the Mode.

(6) Information 1, Information 2, Information 3
Indicates supplementary information regarding the error. For
example, with an /O error the I/O module position {unit No, slot No)
where the error occurred and the read/write register address etc.
will be indicated.

(7) Mode
Indicates the actual mode when the error was detected. Also
displays DOWN when error down occurs. On the mode display,
INIT indicates the system initialization after power is turmed on.

*) Refer to the separate T3 User's Manual-Hardware for display
details of detected errors and methods of proceeding.

User’'s manual - Functions 1 09

5. RAS Functions

PART 2 FUNCTIONS

5.4

Memory protect function The CPU module operation mode switch has 3 positions, HALT/RUN/P-

RUN. The P-RUN position has a memory protect function.

With the operation mode switch in the P-RUN position, the following
operations cannot be carried out. The message “Memory protected”
will be displayed on the programmer screen if the user tries to do so.

(1) Memory clear

(2) I/O automatic allocation

(3) Write 1/0 allocation information

(4) Write system information

(5) Program editing (including on-line changes)

{6) Program downloading

(7) Program read from IC card/EEPROM (including initial load)

(8) Write data to the leading 4k words of data register (D0000-D4095)

The memory protect function can prevent the program being destroyed
due to incorrect operation of the programmer.

—_NOTE
VAV

When the operation mode switch is in P-RUN position, data writing
to the leading 4k words of data register (DO000 to D4095) by the
following instructions is disabled.

» Calendar operation (CLDS FUN 155)

* Expanded data transfer (XFER FUN 236}

» Special module data read (READ FUN 237)

Also, DO000 to D4095 are not cleared in the user data initialization.

110 rrosec T3

PART 2 FUNCTIONS 5. RAS Functions

55
Power interruption The T3 has two functions that control the T3’s operation in the event of
detection function power interruption. One is the power interruption shutdown function
which shuts down the T3's operation when power off state continues for
designated time. The other is the hot restart function which enables the
restart from the power interruption without initialization.

5.5.1
Power interruption Normally, when power is turned off, the T3 continues operation until the
shutdown function internal 5 Vdc drops ta the specified voltage. This continuous operation
time varies depending on the load condition of the 5 Vdc. In some
application, fixing the continuous operation time will be required.

The T3 has the function to designate the continuous operation time
within the power supply module capacity. This function is called the
power interruption shutdown function. The continuous operation time
can be set by the programmer’s System Diagnosis menu or by writing
the value into the special register SW045. (10-255 ms, 1 ms units)

, Interruption Interruption
e

'S
Y

ome AL
VR

40 ms

P
S
-
-
oA
-—-—._,__>
<.
Ratly
L
I—--
e
———
-
PEL
\-u.
PEI
Y
-
-..__.._5_-.—

B Y

60 ms

I, SRR

50 ms settir'ag‘. 50 ms sefting

L
r~

T3's operation

—

T T

Continuous operation Operation stop (all outputs OFF)
because the interruption because the interruption
is less than the setting time. exceeds the setting time.

(move into ERROR mode)

User's manual - Functions 1 1 1

5. RAS Functions PART 2 FUNCTIONS

This function is effective when the setting time is within the maximum
continuous operation time. The maximum continuous operation time
can be evaluated by the internal 5 Vdc current consumption and the
power voltage, as the following graphs.

Continuous
operation time
(ms) , Continuous operation time
300 corresponding to 5 Vdc current
-consumption : -
(Power voltage: 100 Vac/200 Vac)

.\\

200
0 N
\\
100
[
0 . > 5 Vdc current
0 1 2 3 4 5 6 7 (A)

Correction factor
(multiplication)

2.5 + Correction factor for continuous ——
2.0 + operation time correspondingto ———..
/

1.5 4 power voltage
/
1.0 —
0.5 =]
Power voltage
a0 100 110 120 (Vac)
180 200 220 240
__NOTE
VA

(1) DC power supply module (P$332) dose not support this
function.

(2) When the power interruption continues for the setting time, the
T3 will switch all outputs to OFF and enter the ERROR mode.
After that, if power recovers within the maximum continuous
operation time, the T3 will not return to RUN mode
automatically.

(3) Refer to separate T3 User's Manual-Hardware for internal 5 Vdc
current consumption of each module.

112 PrROsSEC T3

PART 2 FUNCTIONS

5.5.2
Hot restart function

5. RAS Functions

For the T3, the user can decide the operation re-start condition at the
recovery from the power interruption.

The hot restart function will be effective when the special relay S0400 is
set to ON (S0400=1). In this case, if power is tumed off in the RUN
mode and recovered within 2 seconds, the T3 moves into RUN mode
without the initial load and the user data initialization.

By using this function together.with.the special. mode-of the sub-
program #2, the user can decide the operation re-start condition as

follows:
interruption | Re-start condition Method
time
Longer than | Re-start after the normal _
2 seconds - | initialization
Within 2 Re-start after the normal | Do not use the hot restart
seconds initialization function (S0400=0)
Re-start after setting the | Use sub-program #2 as
prespecified data into special mods to set
registers/devices prespecified data
Re-start after setting the | Use sub-program #2 as
data according to input special mode to set data
status according to input status
Re-start without any Do not use sub-program
initialization (hot restart) | #2 special mode
—.NOTE
VA

(1) When power interruption is fonger than 2 seconds, normal
initialization will be carried out even if S0400 is ON.

(2) The hot restart function is aiso availabie by using the
programmer’s System Diagnosis menu in addition to setting
S0400 to ON.

User's manual - Functions 1 1 3

5. RAS Functions

PART 2 FUNCTIONS

5.6

/O error mapping The T3 has the function that enables user to detect abnormality in 1O
function modules and the mounting position of the abnormal module. This
function is called the 1/O error mapping function.

To use this function, set the special relay S0150 to ON. When this
function is enabled, the T3 checks the status of each I/0 modules. And
if abnormality is detected, the /O alarm flag (S0009) is set to ON and
the mounting position is registered in the special registers (SW046-

SW049).

The target moduie and the abnormality for this function are as below.

Type Description Abnormality
DO333 16 pts DC output * Fuse blown
DO334 32 pts DC output » External 24 Vdc abnormal
AC363 16 pts AC ouiput * Fuse blown
AC364 32 pts AC output
RO364 32 pts relay output » External 24 Vdc abnormal
RO363S | 16 pts relay output
AD368 8 ch analog input * Module CPU error
DA364 4 ch analog output » External 24 Vdc abnormal
DA374 * Module CPU error
SN321 TOSLINE-S20 » Module CPU error
SN322
SN323
MS311 TOSLINE-F10 » Module CPU error

114 PROSEC T3

PART 2 FUNCTIONS

5. RAS Functions

5.7
Online /O replacement
function

When a failure has occurred in an IO module, the module can be
replaced without stopping the T3 operation. This function is called the
online /O replacement function.

To use this function, set the I/O disconnect designation for the failed
module by the programmer. By this operation, the T3 stops accessing
to the module. Then replace the moduie, and release the IO
disconnect designation.

By the above procedure, the online l/O.replacement can be performed.

This function is effective for the following failures.
* input photo-coupler failure

» Output device (transistor, triac or relay) failure
* Buiit-in fuse blown

The modules available for this function are listed below.

Type Description Type Description
DI334/334H | 32 pts DC input DO335 64 pts DC output
DI335/335H | 64 pts DC input AC363 16 pts AC output
IN354/364 | 32 pts AC input AC364 32 pts AC output
DO333 16 pts DC output RO364 32 pts relay output
DO334 32 pts DC output RO363S 16 pts relay output

— NOTE
VAV

{1} When the I/Q disconnect designation is set for an output
module, the output status is frozen (not cleared to OFF).

(2) Pay special attention to the live parts for safety when using this
function.

(3) Replacement is available between the modules of the same
module type (X 2W, eic.)

User’s manual - Functions 1 1 5

5. RAS Functions

PART 2 FUNCTIONS

5.8
Execution status
monitoring

The following functions are served by the T3 for user to monitor the T3
execution status. (Refer to separate manuals for the programmer for
operation of these.)

(1) Execution time measurement function
Measures the following execution times. This data can be
monitored on the programmer.

L]

— NOTE
VAV

(1) The scan cycle value includes the scan overhead and all

(2) With the main program and the sub-program execution times the

Scan cycle
current value, maximum value, minimum value.(1.ms units).

Main program execution time
current value, maximum value, minimum value (1 ms units)

Sub-program execution time (Sub#1-#4)
current value, maximum value, minimum value {1 ms units)

Timer interrupt execution time
latest value, maximum value, minimum value (0.1 ms units)

I/O interrupt execution time (I/O #1-#8)
latest value, maximum value, minimum value (0.1 ms units)

interrupts occurring during the scan.

interrupt time for any interrupts occurring are excluded.

(2) Online trace function
This function traces the status during program execution and
displays on the programmer screen (power flow display, register
value display). Since this displays data from the point in time that
the instruction is executed rather than at the end of a scan cycle, it
is useful for program debugging.

116 rPrOSEC T3

PART 2 FUNCTIONS

‘5. RAS Functions

5.9
Sampling trace function

Sampling buffer

Sampling target

The sampling trace function collects the status of specified
registers/devices and stores it into the sampling buifer, according to the
specified sampling condition. The collected data can be displayed on
the programmer screen in the format of trend graph (for registers) or
timing chart (for devices).

The sampling trace function is useful for program debugging and
troubleshooting.

Optional IC memory.card or. the file registers (F.registers) of the T3
CPU module is used for the sampling buffer.

@ To use the IC memory card for sampling buffer:
Insert the IC memory card into the T3 CPU module. And set MMR
to the PU slot in the I/O allocation. By this operation, the IC memory
card is assigned for the sampling buffer. The sampling buffer size is
8k words (fixed).

@ To use the file registers for sampling buffer:
When the MMR setting is not made to the PU slot, the file registers
are assigned for the sampling buffer. The sampling buffer size can
be selected from 1k to 8k words (1k words unit). The size is
registered in the system information. The file registers are assigned
for the sampling buffer from the highest address according to the
size specified. (Do not use the file registers assigned for the
sampling buffer in the user program)

The sampling targets (registers/devices) are selected from the following
combinations.

@ 3 registers + 8 devices
@ 7 registers + 8 devices

In case of (D, 256 times per 1k words (max. 2048 times) of collection is
available. In case of @, 128 times per 1k words (max. 1024 times) of
coliection is available.

User’s manual - Functions 1 1 7

5. RAS Functions PART 2 FUNCTIONS

Sampling condition There are the arm condition and the trigger condition for the sampling
trace execution conditions.
The arm condition consists of the start condition and the stop condition.
When the start condition is fulfilled, the data collection is started. And
when the stop condition is fulfilied, the data collection is stopped.
However, if the after counts is added to the stop condition, the arm
condition is extended for specified counts of scans after the stop
condition is fulfilled. :
The trigger condition specifies the timing of the data collection. That is,

- -the data collection is carried.out at the moment of the trigger.condition

is fulfilled while the arm condition is fulfilled.

The sampling target and the condition are set on the programmer
screen (below). Setting is available when the T3 is in HALT mode or
the sampling trace is disabled by pressing F2 (Disable).

1. Buffer Size 8 kilerds
2. Sampling Tvpe 7 registers+8 devices 3 registers+8 devices
3. Arw Comdition Start [£)] asigm Sigm [1

st I ()] \Unsign Sigm [1
® TR []

4. Trigger Comdition I 11 ()] [Inslgn Sigm [i
S. Sampling Bisable/Emable lisahle Emabie

g. Supins ls_utus Standby Executing

f H ﬁ arget

The sampling trace is executed when it is enabled by pressing F3
(Enable).

— NOTE
VAV

The sampling trace can also be started/stopped by manually

without setting the arm condition. F5 (Start) and F4 (Stop) are
tsed.

118 PRrROSEC T3

PART 2 FUNCTIONS

5. RAS Functions

The setting method for each condition is as follows.

Arm start condition:

Start |

L
\ A

] Unsign Sign []
A

g S

A

Comparison value if reference is register and

condition is =
L— Condition
for register: Blank---=
jRREEEE Increase
2 Decrease
Feoeres Change

for device: 1----- Rising (OFF—ON)

Reference: Register or device

Arm stop condition:

Stop [

Unsign Sign | 1
AFTER []
R

()]

Arm condition is extended for specified counts
of scans

Blank-«------- No setting

1 to 65535-:-Scan counts

*) Other setting items are the same as the arm
start condition.

User's manual - Functions 1 1 9

5. RAS Functions

PART 2 FUNCTIONS

Trigger condition:

] 11

T E——

A

()1 Unsign Sign []

NOTE

Counts of condition fulfilled:
Data collection is carried out once per counts
times the following condition fulfilled

Blank ------- No setting (counts = 1)

1 to 65535---Counts

*) Other sefting items are the same as the arm
start condition

VAV

The evaluation of the conditions are performed at the end of every

scan.

Execution example Sampling target and condition setting exampie:

Buffer Slze
Sampling Type

3. Are Cenditien

bk

Trigger Comdition

bl o

[
Sampling Disable/Enable Disable Enable
Standby

Sampling Statms Ezecuting

-

[Ywbke) [bzeéd] | D2BB1]

[sepat] [ve1sd] [veias] [vaies] [peiee] [11 I 1
FLOCIRN 0N — ey

0 Milards

7 registers+B devices 3 registers+8 devices

Start [D2OOL(3)] Imsign Slem 1

St [BS189(1)] ‘Unsign Signm []
*® AFTER [

11 1)) ‘Upsign Sigm [1

In the above example, the data of YW008, D1000, D2001, S0041,
Y0104, Y0105, Y0106 and R0100 are collected every scan, for the
duration of from D2001 changed to 10 scans after R0100 changed to

ON.

120 PROSEC T3

PART 2 FUNCTIONS 5. RAS Functions

Data display example 1 (Data):

4 3 1 5 B 7 L] 9 18

4133 4187 4282 4235 4ME 1338 MW 29 4549
24 29 73 98 124 143 174 280 226

it

o4 1, L] o] . L] - * . . -

M - . o o o © -] =] o o

Vo185 . . o ° -] -])] [a

Y106 ° . <@ [Q] o -] o o

ol < Q © o] [} o o Q o
LRIt opFalniRIE artral EREEE

31 FZ T3 H 5 5 T7 11} 1] T

e
' 1 L e
1 1489
Sampling range [1] ~ [1288] Data range Integer [8] ~ [ool
e 1S FUiCGIEERD s Lo T rend
argst JUEINTEE = JRISY - antrol
1 FZ T3 7 S TS 13 1) |5

Data display example 3 (Timing chart):

8841 e i!lli 1 I§| | if‘ l‘IiiE‘l t ' fnn !IHHE 1
T B o Vo T T Fan T o o T P T
yazss m
L5 S SRS AN MU AN N SOV SR S S W

W |

Sampling range [1] ~ [1408]
N BEROGHED o Lo BT ining
[1

Mex

PLOLE

Control JIEEIE
F1 134 T3 1] 133 1] 1]) 1§ Fig

User’s manual - Functions 1 21

5. RAS Functions

5.10
Status latch function

PART 2 FUNCTIONS

The status latch function will transfer the specified devices/registers
data in batches to the internal latch data storage area when the laich
condition set by the programmer is fulfilled or when the Status latch
instruction (STLS) is executed.

The latch condition is evaluated and data collected at the end of the
scan. However, when the STLS instruction is executed, the data
collection is carried out at the time of the instruction is executed.
Latched data can be displayed on the programmer.

.The latched staius can be reset by.the latch reset cormmand.of the
programmer or by executing the Status latch reset instruction (STLR).

The latch target and condition setting screen is shown below.

1. Latch Condition [p288(1)] Dosign Sigm [1

2. Latch Execution Statms REAIY

3. Latch m:
1 xpeed] 2f xmeg1l 31 ¥eee2] 4i XB@83] 5[x0M84] G[XBEBS]
70 ¥BRBs) 9 xe8e7] 9[xe14] 18] XeA1G] 11{ XBaie] 12[xE1Al
13(xpeit] 14f ¥We1E] 15[XPEIF] 1sf vNaes] 17[vee1e] 13 DGeeB]
15[D68@1] 26[DGBAz] =21[DsBA3l 22[D6BB4] 23(D6BAS] 24l DGBES]
250 16897] 26 D71MA] 27(D7181) 28] DTI8Z] 29[Z916A] JA[ZA1AL)
3l m1e2] -32[zeie3]

PLCCEIRSE GEEH — (RTEE

Edit = 15pla

F1 154 T H 13 F§ F7 Fi F3

The setting method for the latch condition is the same as the arm
condition of the sampling trace function. (See Section 5.9)

In the example above, 32 devices/registers data will be transferred to
the latch data storage area when R0100 is changed from OFF to ON.

The latched data display screen is shown below.

latch Data Display

1 [xpae8] o 17 [Yie1e] aanas
2 [Xaeo1i o 18 [Deaoa. a1008
3 [%paaz] . 19 [Deeal #2368
4 [Yea3] c 2 [peea2 [k
5 [xemaa] L 21 [peeas ShRS
6 [x909s] . 22 [Deeaa 0005
7 { Xeeas] - 23 [BGNS. -38588
B [xooa7] ° 24 [BG6BEG] 655
9 [xean4} ° 25 [HoDeT) 8154
18 [XBai6} < 26 [§7180) -aa1ee
11 [xeo1s} . 27 I D71el -28788
12 [Xea1al ° 28 [17182 8488
13 [xe@icl . 23 { 18188 .

14 [XB@1E] K4 R [me °

15 [%Ba1F] o a1 [ez] .

16 [¥RER9] 21362 32 [18183] .

This function is useful for program debugging.

122 PROSEC T3

PART 2 FUNCTIONS

5. RAS Functions

5.11
Debug support function

5.11.1
Force function

5.11.2
Online program
changing function

The following functions are supported by T3 for effective program
debugging.
(Refer to separate manuals for programmers for operation of these.)

There are two functions in the force function, input force and coil force.
Batch input data is not updated in the input force specified
register/device. The registers/devices which can be specified for forced
input are the input register/device (XW/X)},.link register/relay (W/Z) in
the receiver area and link register/relay (LW/L) in the receiver area.

On the other hand, coil force specified coil instruction can not be
processed when the program is running, so despite the state of the
program, the coil device maintains its previous state.

Simulated input and simulated output are made possible by the
combined use of the force function and the data setting function.

This function enables to change the user program online (during RUN}).

The changes are made after completion of one scan, so it extends the

inter-scan cycle.

Online program change is subject to the following conditions.

* You cannot make changes to the number or order of execution
control instructions (below).
END, MCS, MCR, JCS, JCR, JUMP, LBL, FOR, NEXT, CALL,
SUBR, RET, IRET

* You cannot change the SFC structure in the SFC program section,
but you can change the detail parts (ladder diagram) which relate to
steps and transitions.

Also, there is the constant operand changing function.

This function enables to change the constant operand, such as
timer/counter preset value and constant data used in function
instructions, online (during RUN). For the timer/counter presets,
changing is possible even in the memory protect state (P-RUN).

—NOTE
VAV

When using the online program changing function, pay attention for
safety.

If changed rung contains a transition-sensing type instruction
(below), the instruction will be executed at the online changing if
the input condition is ON, because the input condition of last scan
is initialized. Pay attention for this point.

—tk,-P~,—(P+ , Edged function instructions.

User’s manual - Functions 1 23

5. RAS Functions

PART 2 FUNCTIONS

5.11.3
DEBUG mode functions

DEBUG mode

The T3 has a special mode for supporting the program debugging. Itis
the DEBUG mode. In the DEBUG mode, the following functions
become available.

* Breakpoint setting function
Starts and stops at the instruction which is set as the breakpoint.

* Single step execution function
Starts and stops in unit of one instruction.

* Single rung execution function
Starts and stops in units of one rung.

» N scans execution function
Executes specified times of scans and stops.

= Stop condition setting function
Executes until the specified stop condition is fulfilled.

The T3 can enter into the DEBUG mode only from the HALT mode.

There are three sub-modes in the DEBUG mode, D-HALT, D-RUN and
D-STOP.

D-HALT: When mode is changed from HALT to DEBUG, T3 enters
this mode. The execution condition setting of the DEBUG
mode function is possible in this mode. (All outputs OFF)

D-RUN: Program execution mode. When the stop condition is
tulfilled in each DEBUG mode function, the mode moves
into D-STOP.

D-STOP: Temporary stop mode. The mode transition factor of D-
RUN to D-STOP can be displayed on the programmer.
(Output state remains)

124 PROSEC T3

PART 2 FUNCTIONS

5. RAS Functions

I/O disable

Trace back function

Function details

in the DEBUG mode, I/O module accessing can be disabled by the
execution condition setting. When |/O disable is selected, external
input status is not read into the input devices/registers (X/XW) and the
status of the output devices/registers (Y/YW) is not sent the output
moduies.

In this case, operation modes displayed on the programmer are
changed from D-HALT to S-HALT, D-RUN to S-RUN and D-STOP to S-
STOP respectively.

in the program execution.of the DEBUG mode functions, the online
trace information of latest 10 scans is maintained. This information can
be monitored after the execution is stopped (D-STOP mode).

*1) This function is not available for the single step execution and the
single rung execution.

*2) This function is available only for the program range currently
monitored.

(1) Breakpoint setting function

Program execution is stopped when the instruction which is set as the
breakpoint is fetched. The breakpoint can be set on one location only.
This function becomes available when any number except O is set in
the Breakpoint counts in the execution condition setting. When the
breakpoint is fetched specified times, the program execution is
stopped.

The start of execution can be selected from the initial start and the
continue start.

» |nitial start User data initialization is performed then
program execution is started from the top.
» Continue start........... Program execution is started from the point

where the execution was stopped last time.

When execution is started from the D-HALT mode, the initial start is
selected automatically.

User’'s manual - Functions 1 25

5. RAS Functions PART 2 FUNCTIONS

Execution example 1 (Initial start)

— User data initialization
is performed. Then

] program execution is
— d started from the top
and stopped at the

— breakpoint.
l (The breakpoint
>+ |- instruction.is not
— 1 Rim

executed)
A

Breakpoint

e

Execution example 2 (Continue start)

Last time stopped point

¥
— (-

q Execution is started
— J from the point of last
time stopped and

- stopped at the
l breakpoint.

] T

Vl

Breakpoint

(2) Single step execution function

The execution is started and stopped in units of one instruction. When
this function is activated from the D-HALT mode, the user data
initialization is performed and the program execution is stopped at the
top instruction. (D-RUN— D-STOP)

When this function is activated from the D-STOP mode, T3 executes
the last time stopped instruction and stops at the next instruction.

Execution example 1

- r__[} (}—{ Executes the last time
stopped instruction
and stops at the next

maln instruction.

!

Last time stopped point

126 PROSEC T3

PART 2 FUNCTIONS 5. RAS Functions

It execution is stopped at the sub-routine call instruction (CALL) and if
the sub-routine call condition is satisfied, the next stop point is the
corresponding sub-routine entry (SUBR).

Execution example 2 (CALL/RET)

{CALL N.01] -{
: — s

H SUBR(01)]

—~
\r

| (—

{RET}

L |

As same as above, if execution is stopped at the jump instruction
(JUMP) and if the jump condition is satisfied, the next stop point is the
corresponding labetl instruction (LBL).

In case of the FOR-NEXT loop, the instructions inside the loop are
executed specified times, but the execution trace is not possible. The
first time execution status is displayed and the execution is stopped at
the next instruction to the loop.

Execution example 3 (FOR-NEXT)

.
—{—{ FOR10] Executed 10 times
but the first time
j
— = d execution status is
| { NEXT] displayed.
— | ' —(—

The interrupt program is executed during the single step execution, but
it is not traced.

User’s manual - Functions 127

5. RAS Functions

PART 2 FUNCTIONS

(3) Single rung execution function

The execution is started and stopped in units of one rung. When this
function is activated from the D-HALT mode, the T3 performs the user
data initialization and stops at the top instruction.

(D-RUN—D-STOP)

When this function is activated from the D-STOP mode, the T3
executes the last time stopped rung and stops at the first instruction of
the next rung.

Execution example 1

Last time stopped point

¥
Inmlunis (—
DL o
galnmim! 1

Even if the rung contains the sub-routine call (CALL) or the jump
(JUMP) instructions, the next stopping point is the next rung despite of
calling or jumping.

Execution example 2 (JUMP)

M Last time stopped point If jump condition is
|| JUMP N.02 1 not satisfied, the
ming] - execution is stopped
at the next rung.
- H]
If jump condition is
] satisfied, the
execution is moved to

y the LBL instruction.
L LBL(02)] (not stopped)

128 FPROSEC T3

PART 2 FUNCTIONS 5. RAS Functions

In case of the FOR-NEXT loop, the instructions inside the loop are
executed specified times, but only the first time execution can be traced
as same as the single step execution.

Also, the same precautions as the single step execution are applied to
the interrupt program.

(4) N scans execution function

The T3 executes the specified times of scans and stops at the end of
the scan. :

The scan counts is set in the execution condition setting. The setting
range is 0 to 65535. If O is set, this function is disabled.

The start of execution can be selected from the initial start and the
continue start, as same as the breakpoint setting function.

(5) Stop condition setting function

The T3 executes the program until the stop condition is fulfilled.
The checkpoint of the condition can be selected either at the end of
scan or at the breakpoint.

The stop condition can be set as either AND or OR conditions of up to
four registers/devices data.

The start of execution can be selected from the initial start and the
continue start, as same as the breakpoint setting function.

User’s manual - Functions 1 29

5. RAS Functions PART 2 FUNCTIONS

Notes (1) The DEBUG mode functions can also be used in combinations as
follows.

Breakpoint setting

or N scans execution
Single step execution | and/or and/or
or Stop condition setting

Single rung execution

(2) The initial load i not performed at the mode changing from D-HALT
(S-HALT) to D-RUN (S-RUN).

(3) The timers used in the program are updated as normal in free scan,
and updated as 100 ms/scan in the single step/rung execution.

(4) The sub-program execution is not interrupted in the single step/rung
execution. In free scan, it is interrupted as normal.

(5) The actions of the interrupt program are as follows.

At D-HALT (S-HALT).....inhibited
At D-STOP (S-STOP) ...holded (executed when changed to enable)
At D-RUN (S-RUN} enabled

Restrictions (1) The DEBUG mode function is not available for the SFC program
block.

(2) The DEBUG mode function is available only when the programmer
is connected directly to the T3's programmer port.

(3) Program modification should not be made in the DEBUG mode.
Otherwise, the DEBUG mode functions may not work correctly.

— NOTE
VA

In the D-STOP and D-RUN modes, FAULT LED blinks. And in the
S-STOP and S-RUN modes, FAULT and I/O LEDs blink. Both of
above are not error.

130 PrROSECT3

PART 2 FUNCTIONS

5. RAS Functions

5.12

System diagnostics The following functions are provided for diagnosis of controlled system
operation. The system can be monitored easily using of these

functions.

(1) Diagnostics display function

By using the diagnostics display instruction (DIAG) in the user
program, the relevant error code (1-64) and error message
(maximum 12 characters per message) can be displayed on the
programmer screen.. Also,.the error code generated is stored in the
special registers (SW016-SW033) in order of generation up to a
maximum of 16 codes and the annunciator relay (S0340-S037F)
corresponding to the error code goes ON. It is possible to use the
special register/relay to display the error code on an external

display monitor.

The error codes registered can be reset one by one (shift up after
erased) using the programmer or by the diagnostics display reset

instruction (DIAR).

This function may also be used effectively in conjunction with the bit
pattern check and the sequence time over detection mentioned
below. (Refer to detaiis of diagnosis display instructions in other

manual for instruction set)

display on progarmmer <€— SW016
(first error code and SWO17

corresponding error message
po J g)SW018

SWo019
SWo20
SWo21

8W033

first error code

number of codes

first error code

error code 2

error code 3

error code 4

execution of DIAG
instruction {error
codes registered to
the end)

--reset the error code
registration by
DIAR instruction or
programmer
operation

When error codes are registered, for example 3, 10, 29, 58, each
corresponding annunciator relay, S0342, S0349, S035C, S0379

comes ON.

{Annunciator relay)

FEDCBA®S987 86543210

SW034
SW035
SWo36 40{39|38137|36(35|34|33
SWO037 56|55|54153|52|51 (50|49

User’s manual - Functions 131

5. RAS Functions PART 2 FUNCTIONS

(2) Bit pattern check function
This function checks that the device ON/OFF status for a number of
devices are in the normal combinations (pattern). For example,
checks that not more than 2 from device 1, 2 and 3 are ON
simultaneously. Up to 8 devices can be registered, and up to 16
patterns can be set. The checkpoint can be selected either before
program execution or end of scan. The resulis are reflected in the
special relay S0142.
This function is enabled when the special relay S0140 is set to ON.

device registered hit pattern setting present device
(maximum 8) (maximumn 16 patterns) status
X000 O @ - @ O
X003 ® O - O o
X015 XX e o = o
. comparison
Y08A O X - ® O
results
agrees with the setting pattern S0142 =0

dose not agree with the setting pattern ...S0142 =1
In the pattern setting, OFF is shown as O ON is shown as @ and
do not care is shown as X.

The device and bit pattern registration takes place in programmer
system diagnosis menu.

*} The checkpoint of this function can be selected by the special
relay SO15F as below.

S015F = OFFbefore user program execution
(after /O processing)

S015F =ON after user program execution

132 PROSEC T3

PART 2 FUNCTIONS 5. RAS Functions

(3) Register value validity check function
This function checks that the register value is within the specified
numerical value range. Up to 4 registers can be registered with the
maximum and the minimum data. Also, it is possible to select the
register value to be taken as an integer (signed) or as a positive
integer (unsigned).
The checkpoint can be selected either before program execution or
end of scan. The results are stored in the special relay S0143-
30146 (within the range: 0, outside the range: 1).
This function is enabled when the special relay SC140 is set to ON.

registered register type minimum value maximum vaive present
{maximum 4) register value
XW034 unsigned 0 400 200
XW035 signed -1500 1500 — 2000
Doo11 unsigned Ho200 H9000 . H1234
W0100 signed -300 gop COMPANSON 4600
results

register 1 (XW034) ... S0143=0
register 2 (XW035) ... S0144 = 1
register 3 (DO011) ... S0145=0
register 4 (WO100) ... S0146 = 1

The register and the numerical value range are registered in
programmer system diagnosis menu.

*y The checkpoint of this function can be selected by the special
relay SC15F as below.

S015F = OFFbefore user program execution
(after I/O processing)

S015F =ON........ after user program execution

User's manual - Functions 1 33

5. RAS Functions PART 2 FUNCTIONS

(4) Sequence time over detection function
The alarm step is provided for one of SFC (sequential function
chart) instructions. This Alarm step turns ON the specified device
when the following transition is not come true within the preset time.
This function allows easy detection of operation hold ups in
sequential control process

(SFC structure)
i
i
1'_ (action part)
(transition conditions part) 120 ;
________ work processing
processing | 1
completed
121
TOO3
1000 A p------1 work {ransport
R1060
transport | -
completed
p Alarm step
192 ‘ monitor timer = TO03

monitor fime = 10 seconds
alarm device = R1000

With the above example, if the transport has not been completed
(work arrived signal ON etc) within 10 seconds from when the work
transport started, the specified alarm device (R1000) comes ON.
By this means a malfunction of the work drive or the sensor can be
detected.

Refer to Part 3 of this manual and the other instruction set manual
for explanation with respect to SFC.

134 PrOSEC T3

PART 2 FUNCTIONS 5. RAS Functions
%

5.13
Password function For the system security, the password function is provided.
There are three levels of protection as shown below. Accordingly, three
levels of passwords can be set.

Level 1 possible functions

Clear memory
Writing/down-loading program
Operation mode control
Setting/changing password

” 5 s

Level 2 possible functions

* Reading/up-loading program
* Program write to IC memory card (EEPROM)

— Level 3 possible functions

Writing data

Writing system information
I/O allacation

Sampling trace, status latch

— Always possible functions

* Reading system information

+ Reading /O allocation information
* Reading event history

* Reading data

For example, if level 1 and level 2 passwords have been set, only level
3 and always possible functions are enabled. In this state, if the level 2
password is entered, the level 2 possible functions are also enabled.

—_NOTE
VA

(1) Do not forget your levei 1 password. Otherwise, you cannot
release the password protection.

(2) Protection level for each programmer command is explained in
the programmer operation manual.

User’s manual - Functions 135

PART 3
PROGRAMMING INFORMATION

PART 3 PROGRAMMING INFORMATION 1. Overview

1.1

Aims of Part 3 The main functions of the T3 are to store the user program, to execute
the stored user program and to control and monitor the operation/state
of machines/processes which are the result of such execution.
The user program is a series of instructions for achieving the request
control function, operation conditions, data processing and the interface
with the operator. It is stored in the user program memory. The
execution of the user program is the sequential performance of the
processes of reading user data in which external input/output data and
control parameters are-stored,-processing.the respeetive instructions
and storing the resulis of this in the user data memory.

Pait 2 described the types of processing which are executed by the T3
internally, functions for executing the user program efficiently and the
RAS functions. Part 3 describes the necessary information for creating
user programs, that is to say detailed user data, detail of the
input/output allocation and the programming languages. Also, the user
program configuration is described to use the T3's multi-tasking

function.
1.2
User memory The following diagram shows the user memory configuration of the T3.
configuration
Peripheral Memory
Main Memory r A N
{RAM) (EEPROM) (IC Memory Card)
User program User program User program
memory memaory memory
(32k steps) (32k steps) (32k steps)
User data User data User data
memory " memory memory
(IC Memory Card)
(XWNW, RW, (D, HW, T, C,) (D, RW, T, C) :::::---:--:::_—:;rl
T,C. D, W, LW, S ———
SW.FLJK [T T T I
User data memory o
{expanded F register}| -

User's manual - Functions 1 39

1. Overview PART 3 PROGRAMMING INFORMATION
.~ "~ "~~~ o]

The memory which can be used by user is called user memory. The
user memory can be divided by configuration into main memory and
peripheral memory. And the user memory can be devided by function
into user program memory and user data memory.

The main memory is a built-in RAM memory with battery backed up.
On the other hand, the peripheral memory is an optional memory
configured by IC memory card or EEPROM. The peripheral memory
can be used as back up for main memory (user program and register
data) or expansion memory.{expanded file register, |C.memory card
only).

The user program memory has a capacity of 32k steps (step is a unit
for instruction storage), and stores a series of instructions created by
ladder diagram or SFC.

The user data memory stores variable data for user program execution.
It is separated by function into input/output registers, data registers, etc.

140 PROSEC T3

PART 3 PROGRAMMING INFORMATION 2. User Program Configuration

2.1
Overview The user program memory can be divided into the system information
storage area, the user program storage area and comments storage
area as shown below.

User Program Memory Configuration

0.5k steps \ System information
A
User program
31.5k steps
v Comments

System information is the area which stores execution control
parameters for the user program and user program management
information, and it always occupies 0.5k steps.

Comments are added and stored for easy maintenance of the user
program. The comments storage area is not fixed. (user setting)

The user programs is divided into the program types of main program,
sub-programs, interrupt programs and sub-routines, depending on the
function.

Of these, the main program is the core of the user program.

On the other hand, when it is difficult to achieve the requested control
functions by the main program alone, sub-programs and interrupt
programs are used as required, but need not be provided.

Also, sub-routines are used when repetition of the same process in a
program is required, or in order to see the program more easily by
making one function into a block, but may not be provided if not
required.

User’s manual - Functions 141

- 2. User Program Configuration

PART 3 PROGRAMMING INFORMATION

User Program Configuration Program Type Internal Configuration
(Program Types) {Blocks)

Main program
prog Block 1

Sub-program #1 \

Sub-program #2 \

Sub-program #3 R © oo o Block2 -

Sub-program #4 y

Timer interrupt program k

I/O interrupt program #1 \ Block 3

I/Q interrupt program #2 K

/O interrupt program #3 K

/O interrupt program #4 Y Block n

IO interrupt program #5 N {n=max. 256)

I/Q interrupt program #6 N

I/O interrupt program #7

YO interrupt program #8 Block 1

Sub-routines

Also, in each program type, the user program is arranged by units
called ‘blocks’.

Internally, a block definition label is present at the head of each block.
The program type, block number and programming language
information arein the block definition label (there is no need for the
user to be concermned with the block definition label).

Although the 2 programming languages of ladder diagram and SFC can be
used in combination in the T3, only 1 language can be used in any 1 block.

—NOTE
VA

(1) In each program type and block, there is no limit to the program
capacity (number of steps). The only limit is the total capacity
(31.5k steps).

(2) The block number need not be consecutive. In other words,
there may be vacant blocks in the sequence.

142 PROSEC T3

PART 3 PROGRAMMING INFORMATION 2. User Program Configuration

2.2
System information

System information is the area which stores execution control
parameters and user program management information when
executing a user program, and occupies 0.5k steps of the user program
memory. The following details are included in system information.

(1) Program ID
This is the user program identification. A setting of up to 10
alphanumeric characters can be set. The program ID can be
registered/monitored on the. system information screen.of the
programmey.

(2) System Comments
These are comments attached to the user program. A setting of up
to 30 alphanumeric characters can be set. The system comments
can be registered/monitored on the system information screen of
the programmer.

(3) Memory Capacity
This stores the memory type (user program capacity/data register
capacity). The memory capacity can be monitored on the system
information screen of the programmer. (monitor only)

(4) Steps Used
This stores the number of steps used in the user program. The
number of steps used can be monitored on the system information
screen of the programmer. (monitor only)

(5) PLC Type
This stores the model type. The PLC type can be monitored on the
system information screen of the programmer. (monitor only)

(6) Program Size Setting
This is the capacity assigned to the user program. The rest of this
setting out of total 32k steps is assigned to the comments. The
program size setting can be registered/monitored on the system
information screen of the programmer.

{7) Sampiling Buffer Setting
This performs the setting and registration of the storage capacity of
the sampling buffer for the sampling trace function. The maximum
setting is 8k words. The sampling buffer setting can be
registered/monitored on the system information screen of the
programmer.

User’s manual - Functions 1 43

2. User Program Configuration PART 3 PROGRAMMING INFORMATION
L e

(8) Retentive Memory Area Designation

This sets and registers the address ranges for the auxiliary register
(RW), timer register (T), counter register (C) and data register (D)
which retain pre-power cut data out of the user data. The ranges
registered here are outside the subjects of the user data
initialization process. For each of these registers, the ranges from
the leading address (0) to the designated address are the retentive
memory areas. The retentive memory area designations can be
registered/monitored on the system information screen of the
programmer.

Scan Time Setting

This sets and registers the scan mode (fioating/constant). When
no scan time is registered (blank), the mode becomes the floating
scan mode. When a numerical value is set for the scan time, the
mode becomes a constant scan mode which takes that time as the
scan cycle. The setting for the scan cycle is 10-200 ms (in 10 ms
units).

The scan time setting can be registered/monitored on the system
information screen of the programmer.

(10) Sub-Program Execution Time

Time limit factor assigned for sub-programs in the floating scan.
The setting range is 1-100 ms (in 1 ms units). The sub-program
execution time can be registered/monitored on the system
information screen of the programmer.

(11) Timer Interrupt Interval

This sets and registers the interrupt cycle of the timer interrupt
program. The setting range is 2-1000 ms (in 1 ms units). The
timer interrupt interval can be registered/monitored on the system
information screen of the programmer.

(12) Computer Link Parameters

This sets and registers the parameters for the computer link.
The computer link parameters can be registered/monitored on the
system information screen of the programmer.

The parameter items and their setting ranges are as follows:

* Station No. 1-32 (initial value=1)

*Baud ratec...... .300, 600, 1200, 2400, 4800, 9600,
19200(initial value 9600}

T Panty..c e, None, odd, even (initial value=odd)

* Data length (bits)......... 7, 8 (initial value=8)

* Stop bit.eceeeeveeerieenen, 1, 2 (initial value=1)

144 Prosec 13

PART 3 PROGRAMMING INFORMATION 2. User Program Configuration

(13} I/O Allocation Information
This stores I/O allocation information and unit base address
designation information. This information is created either by
executing the automatic 1/O allocation command or by setting and
registering an I/O module type for each slot (manual 1/O allocation)
on the |/O allocation information screen of the programmer.

(14) interrupt Assignment Information
This stores the inforrnation of correspondence between the /0
interrupt. program.and /O modules with.interrupt functions. In the
initial state (without setting this information), the tower number of
I/O interrupt programs are assigned in sequence from the interrupt
module closest to the CPU.
This information can be registered/monitored on the interrupt
assignment screen of the programmer.

(15) Network Assignment Information
information on the link register areas allocated to the data
transmission modules (TOSLINE-S20, TOSLINE-F10) is stored
here. This information can be registered/monitored on the network
assignment information screen of the programmer.

User's manual - Functions 145

2. User Program Configuration PART 3 PROGRAMMING INFORMATION

2.3
User program

The user program is composed of each of the program types of main
program, sub-programs (#1 - #4), interrupt programs (Timer, 1/O#1 - /O
#8) and sub-routines. Of these program types, a main program must
always be present. However, the other program types may not be
present at all if they are not used. Therefore, needless to say, a user
program can be configured with a main program only.

Also in the program types, the program can be divided into units called
‘blocks’ (block division is.not.necessary.unless required).. Block division
is required in the following cases.

* When using languages other than ladder diagram (1 language/
block)

When creating muitiple SFC programs (1 SFC/block, see Section
5.3)

When block division by control function units makes the program
easier to see.

There are no restrictions on program capacities (number of steps) by
program types and blocks. (Except in the case of SFC)

As block numbers, 1 to 256 are available. However, the block numbers
need not be consecutive. When executing the program, the program is
executed in sequence from the block with the lowest number.

146 PROSEC T3

PART 3 PROGRAMMING INFORMATION 2. User Program Configuration

231
Main program The main program is the portion which is the core of the user program
and is always executed every scan. The main program must be
finished by the END instruction.

Although instructions may be present after the END instruction, these
portions will not be executed. (However, they count in the number of
steps used)

(Example of Main.Program Canfiguration)

A
Block 1 1 HH)—[
H :
!—1 | {Ladder diagram block)
800 H HH ——(H
g | Block 10
8
g {SFC block)
S !
5 &
Block 11
L1 1] (1]
| | . (SFC block)
HXXXF——- | (adder dia
gram block)
v Block 20 END ———

User’s manual - Functions 147

2. User Program Configuration PART 3 PROGRAMMING INFORMATION

2.3.2

Sub-program The sub-program is a program type to achieve the muilti-tasking

function. 4 sub-programs (Sub #1 - Sub #4) are provided.

Sub #1 is executed once in the first scan before the main program
execution. Therefore, the Sub #1 can be used for the initial setting
program.

Sub #2 can be selected from the two functions, the initial setting

program in the case of power.interruption.and the normal.sub-program

function which can be controlled by other program types.
Sub #3 and Sub #4 are fixed as the normal sub-program function.
In the normal sub-program function of Sub #2, Sub #3 and Sub #4, the

execution mode can be selected either the one time mode or the cyclic
mode.

NOTE
VA

For the details of the sub-program execution, see Part 2 Section 3.2.
Also, for Sub #2, see Part 2 Section 5.5.2.

Each sub-program must be finished by the END instruction.

Although instructions may be present after the END instruction, these
instructions will not be executed. (However, they count in the number
of steps used)

148 PROSEC T3

PART 3 PROGRAMMING INFORMATION 2. User Program Configuration

Sub-programs execution conditions are summarized in the table below.

Sub No. Execution condition

Sub #1 Executed once in the first scan before the main
program execution, except when T3 is in the hot restart
mode (S0400=1 and power recovery within 2s).

Sub #2 | [Special mode] S0403=1

Executed once in the first scan before the main
program execution when T3 is in the hot restart mode
(S0400=1 and power recovery within 2s).

[One time mode] S0403= 0 and S0405=0
Executed once when S0409 is changed from 0 to 1.
(80409 is reset to 0 automatically)

[Cyclic mode] S0403=0 and S0405=1
Executed once per every specified number of scans
which is specified by SW042, during S0409=1.

Sub #3 | [One time mode] S0406=0
Executed once when S040A is changed from 0 to 1.
(S040A is reset to 0 automatically)

[Cyclic mode] S0406=1
Executed once per every specified number of scans
which is specified by SW043, during S040A=1.

Sub #4 | [One time mode] S0407=0
Executed once when S040B is changed from 0 to 1.
(S040B is reset to 0 automatically)

[Cyclic mode] S0407=1
Executed once per every specified number of scans
which is specified by SW044, during S040B=1.

—NOTE
VA

The sub-program execution may be time-sliced by scan.

" Therefore, to prevent the unexpected status changes of /O
registers (XW/YW) used in the sub-program, it is recommended to
use the batch 1/O inhibition (with i allocation) and the direct I/0O
instruction (1/0).

User’s manual - Functions 1 49

2. User Program Configuration PART 3 PROGRAMMING INFORMATION

233
Interrupt program

There are a total of 9 types of interrupt program. These are 1 timer
interrupt program which is executed cyclically with a cycle which is set
in system information, and 8 I/O interrupt programs (#1 - #8) which are
started by interrupt signals from /O moduies with interrupt function.

Timer interrupt program

This is executed cyclically with a cycle of 2-1000 ms which is
registered in system information. When no cycle is registered
(blank}, it is not executed.

Set the interval setting of the timer interrupt with 1 ms units in item
16 of the T-PDS system information screen.

For details, see T-PDS operation manuals.

I/O interrupt programs (#1 - #8)

These are started by interrupt signals generated by YO modules with
the interrupt function. The coordination between the interrupt
program numbers and the 1/O modules with interrupt function can be
changed by the interrupt assignment function.

Each interrupt program must be finished by the IRET instruction.

—NOTE

VAV

(1} For details of interrupt program operation, see Part 2 Section
3.3.

(2) SFC cannot be used in the interrupt program.

The following modules are available as the I/O module with the
interrupt function (interrupt |/O).

Change detect 8 pts DC input

(Part No.: CD 332, allocation type: iX1W)
2 channels pulse input

(Part No.: P1312, allocation type: iX+Y2W}

When automatic 1/0 allocation is carried out in the state with interrupt
IO mounted, for coordination between the interrupt program number
and the interrupt |/O, the lower number /O interrupt programs are
allocated in sequence from the interrupt I/O closest to the CPU. (See
the example on the following page)

150 PROSECT3

PART 3 PROGRAMMING INFORMATION 2. User Program Configuration

Example)
(1) Module mounting status

Interrupt 1/Q (1)

/— Interrupt /O {2) /—— Interrupt /O (3)
2#3 5 6

. PU 041 4 7 8 9
Basic Plleclililxix|Y|Y({Y|._|._1li
Uft1f1i2f(212{2]|2|8|18|1
WIW|W(WwW| WwWiw| W . W,
) 0 1 2 3 4 5§ 6 7 8 9 10
Expansion | p ii | X XIX|Y
(unit 1) sliXiX ElEBlE|E|E
1 +]+ [I O I
Y|y |3 &|8|3
2l2|14(4 144 |Z(=[>|>>
wiw|w|lw|wlw :
% Interrupt /O (5)
Interrupt /O (4)
(2) Register allocation
Unit O Unit 1
? Module Type Register 3 Module Type Register
PU - - 0 | X+Y 2W | XW013, YW014
01{iX 1w | XW000 1] iX+Y 2W | XW0i15, YWO018
1]iX W | XWo0o1 21X 4w [XW017 ~XW020
2| X 2W | XW002, XW003 3| X aW | XW021~XW024
3| X 2W | XW004, XW005 4 |Y AW | YW025~YW028
41Y 2W | YWO008, YW0Q7 5|Y 4W | YWO029~YW032
51Y 2W | YWO008, YW009 6 | Vacant -
B Y 2W | YWO010, YWO11 7 | Vacant -
7 | Vacant - 8 | Vacant -
8 | Vacant - 9 | Vacant -
9 |iX 1W | XWo12 10 | Vacant -

(3} Interrupt program assignment

Pogamype | Soresponding | Conepondts | pamar
/O interrupt program #1 XW000 Unit 0-Slot 0 | interrupt /O (1)
I/O interrupt program #2 XW001 Unit 0-Slot 1 Interrupt /O (2)
/O interrupt program #3 XWo12 Unit 0-Slot 9 | Interrupt VO (3)
/O interrupt program #4 XW013 Unit 1-Slot 0 | Interrupt I/O (4)
I/Q interrupt program #5 XWo015 Unit 1-Slot 1 Interrupt /O (5)

User's manual - Functions 1 51

2. User Program Configuration PART 3 PROGRAMMING INFORMATION

The interrupt program assignment determined as the page before can
be changed as follows.

Example)
Interrupt assignment information (before changing)
Interrupt level Interrupt program No. Input register No.
0 f1] XW000
1 1271 ST T XWO0I
2 [3] XWo12
3 [41 XW013
4 [5] XWo015

\U/ Change to

Interrupt assignment information (after changing)

Interrupt ievel Interrupt program No. Input register No.
0 [1] XW000
1 [2] XWO001
2 f3] XWo012
3 [5] XWo13
4 [4] XW015

In this example, interrupt programs for X\W013 and XWQ15 are
exchanged.

—NOTE
VAV

By using the interrupt assignment function, the correspondence
between the interrupt I/O and the interrupt program No. can be
changed. However, the interrupt level (priority) is fixed as the
hardware. The interrupt I/O mounted closer to the CPU has higher
interrupt priority. The interrupt priority cannot be changed.

152 PROSEC T3

PART 3 PROGRAMMING INFORMATION 2. User Program Configuration
e

23.4
Sub-routines

When it is necessary to execute repetitions of the same process in a
program, this process can be registered as a sub-routine. This sub-
routine can be executed by calling it at the required location. By this
means, the number of program steps can be reduced and, at the same
time, the program becomes easier to see since the functions have been
put in order.

Sub-routines can be called from other program types (main program,
sub-programs, interrupt programs).and.from.other sub-toutines (they
can also be called from the action part of SFC).

The sub-routine shouid be located in the program type “Sub-routine”,
and started by SUBR instruction and finished by RET instruction. Up to
256 sub-routines can be programmed.

It is necessary to assign a sub-routine number to the SUBR instruction
(sub-routine entry instruction). The effective numbers are from 0 to

255.
—] suBR (o$0)]—

Sub-routine number

The RET instruction (sub-routine return instruction) has no sub-routine
number.

The instruction which calls a registered sub-routine is the CALL

instruction (sub-routine call instruction) of ladder diagram. The CALL
instruction requires the number of the sub-routine it calls.

— calL N.o$o —

Sub-routine number

User’s manual - Functions 1 53

2. User Program Configuration PART 3 PROGRAMMING INFORMATION

The following is an execution sequence when sub-routines are

included.
Program under execution Flow of execution Sub-routines
: Y HSUBR (001)]——|
| /®7//
HCALL N.001]—i ® Vil
: y @
® e | fmH
}—1 HcaLL N.001H :
¥ —{SUBR (031) }———
® :
® ® .
HCALL N.031} < { [RETH
MOV}I—— | | :

@ By the sub-routine 001 CALL instruction execution, the execution
shifts to sub-routine 001

@ When it has proceeded to the RET instruction, the execution returns
to the instruction following the CALL instruction in D

@ When device @ is ON, the CALL instruction is executed, and the
execution shifts to sub-routine 001

@ When it has proceeded to the RET instruction, the execution retums
to the instruction following the CALL instruction in @

® When device ® is ON, the CALL instruction is executed, and the
execution shifts to sub-routine 031

® When it has proceeded to the RET instruction, the execution returmns
to the instruction following the CALL instruction in ® (the MOV
instruction in this example)

154 PrROSEC T3

PART 3 PROGRAMMING INFORMATION 2. User Program Configuration

24
Comments

| (r-PDS).

—NOTE
VAV

(1) Multiple sub-routines can be programmed in a block. However
for execution monitor by programmer, 1 sub-routine on 1 block
is recommended.

(2) SFC cannot be used in a sub-routine.

(3) Other sub-routines can be called from a sub-routine (nesting),
up to 6 layers.

(4) Since the operation will become abnormal in cases such as
calling the same sub-routine during the execution of a sub-
routine, take care that the cases do not occur.

Comments can be added and stored in the T3's user program memory.
By this means, the user program becomes easier to understand.

The types of comments which can be stored in the T3 are
tags/comments for registers, devices and SFC steps.
Tag...ccooviveennns up to 5 characters
Comment....... up to 20 characters

The comments storage capacity is the rest of the program size setting
out of total 32k steps.

The maximum storage number of comments (tag and comment paired)
is calculated as follows.

(1024 x (32-N)-38)/10

Program size setting
(assigned to the user program)

—-NOTE
VA

Here, the comments which can be stored in the T3 are explained.
Comments can also be saved in a disk file.
.-For.the disk file usage, see separate manual for the programmer

User’'s manual - Functions 1 55

3. User Data

3.1

PART 3 PROGRAMMING INFORMATION

Overview The area which stores the external input/output data, current values of

timers and counters and the values of the variables for data processing
is called the ‘user data’.

For user data, the storage location of the data is expressed by a
combination of ‘function type’ and a sequence of numbers which starts
from O (this is called the ‘address’)

Exampie) XW 005

Address 005
(in this case it is the register address)
Function type XW=Input register

To say that the content of XW0O05 is 100 is to say that the
numerical value 100 is stored in a location in the user data
memory indicated by XW005.

Also, user data is divided into registers and devices according to the
type of data to be stored. (Although the expression ‘relay’ is also used,
a relay should be regarded as one type of device)

A ‘register’ is an area which stores 16 bits of data and it is expressed
as a combination of a function type and a register address.
(the register address is a decimal number)

Example) D 1024

Register address (decimal number)
Function type D=Data register

On the other hand a ‘device’ is an area which stores 1 bit of data (it
expresses 1 or 0, in other words ON or OFF), and it is expressed as a
combination of a function type and a device address. However, a
device does not use an independent memory area. It is allocated as 1
bit in the 16 bits of the corresponding register. Therefore, the device
address is expressed in the form of the corresponding register
address+bit position.

Example) X 005

6
T; Bit position (there are 16 positions 0-F)
Register address (decimal number)
Function type X=Input device
(corresponds to input register XW)

156 PROSEC T3

PART 3 PROGRAMMING INFORMATION 3. User Data

The correspondence between register data and device data should be
considered as follows.

Exampile) When it is said that the content of XWO005 is 100, since
the decimal number 100 is expressed as 1100100 in
binary notation, this indicates that each of the bits of
XWO005 will be as follows.

(MSB) (LSB)
FEDCBA®S987 65 4.3 21 0 Bitposition
xwoos [0}o[o|o|olojo]oiof1[1]o]ol1]0]0]

1 X0056 is ON (1)

At this time, the data of device X0056 corresponding to
bit position “6” of XW005 is 1, that is to say X0056 is ON.

The correspondence of registers and devices is shown by function

types.
* input device (X) corresponds to 1 bit of input register (XW)
* Qutput device (Y)......... corresponds to 1 bit of cutput register (YW)
» Auxiliary device (R)......corresponds to 1 bit of auxifiary register (RW)
* Special device (8)........ corresponds to 1 bit of special register (SW)
* Link device (Z)............. corresponds to 1 bit of link register (W)
(but only in the leading 512 words)
* Linkrelay (L)....ccceeenn. corresponds to 1 bit of link register (LW)

The treatment of the other devices, |, O, T. and C., is slightly different.
It is described in detail in Section 3.2.

User's manual - Functions 157

3. User Data

PART 3 PROGRAMMING INFORMATION

The following Table shows the types of registers and devices and their
address ranges. Their functions and methods of use are described in

Section 3.2.

Function Type ype Agg,ﬂgis Quantity Eég;?ﬁg}g"
Input register XW XWO001
O.utput' register. YW 000-255 \,Tv?,tf‘d'fss YWO034
Direct input register W IW001
Direct output register ow 1 OW034
input device X001A
Output device 0000.255F Total 4096 Y0348
Direct input device 1 points 10012
Direct output device 9] 00340
Auxiliary register RW | 000-511 512 words RW100
Auxiliary device R 0000-511F 8192 points R1001
Special register SW | 000-255 256 words SwWo14
Special device S 0000-255F 4096 points S0140
Timer register T 000-511 512 words T030
Timer device T. 000-511 512 points T.030
Counter register C 000-511 512 words c199
Counter device C. 000-511 512 points C.199
Data register D 0000-8191 8192 words D4055
Link register w 0000-1023 1024 words W0200
Link device Z 0000-511F 8192 points Z2001
Link relay register LW ; 0000-255 256 words Lw123
Link relay L 0000-255F 4096 points L123F
File register F 0000-8191 8192 words F0O500

I None 1 word |
-|.Index register None 1 word
K None 1 word K
— NOTE
VA

In the T3, 1 word is treated as equal to 16 bits, and the number of
registers is counted in word units.

158 PrROSEC T3

PART 3 PROGRAMMING INFORMATION 3. User Data

3.2
Registers and devices The following Tables describe the functions and address ranges for
each function type of registers and devices

Input registers and

, Codes Input registers.....XW
Input devices

Input devices......X

Addresses | Input registers.....000-255 (256 words) Common use as output
Input devices......0000-255F (4096 points) | registers/output devices

Functions These are allocated in the input module asregister units (word units)
by perfoming input/output allocation. The signal state inputted to the
input module is stored in the corresponding input register by batch
input/output timing (except for modules which have the designation i
aftached when allocating). An input device expresses 1 bit of the
corresponding input register.

The data of input register/input devices basically do not change during
1 scan. However, when executing a direct I/O instruction {FUN235),
data is read from the corresponding input module when the instruction
is executed and is stored in an input registerfinput device (XW/X).
Thus, the data changes during the scan.

Output registers and

. Codes Qutput registers.....YW
Cutput devices D

QOutput devices....... Y

Addresses | Output registers.....000-255 (256 words) Common use as input
Output devices......0000-255F (4096 points) | registers/input devices

Functions | These are allocated in the output module as register units (word units)
by performing input/output allocation. The data stored in the output
register is written to the corresponding output module by batch
input/output timing, and the state of the output signal of the output
module is determined (except for modules which have the designation
i attached when allocating). An output device expresses 1 bit of an
output register.

User's manual - Functions 159

3. User Data PART 3 PROGRAMMING INFORMATICN

Direct input registers

. h . Codes Direct input registers.....IW
and Direct input devices pul 59

Direct input devices......|

Addresses | Direct input registers.....000-255 (correspond to input registers (XW))
Direct input devices......0000-255F {correspond to input devices (X))

Functions | Direct input registers/direct input devices do not themselves indicate
specific memories.

When the instruction which uses these registers/devices is executed,
they operate and read data directly from the input module
corresponding to the address. These registers/devices are used when
using the T3 as the direct input/olitput system {direct system) and not
the batch input/output system (refresh system).

Exampie) 10000

— NO contact instruction of 10000
When executing the instruction, the bit data corresponding to X0000 is

read from the input module and the instruction is executed by this
data. (The X0000 data is not affected)

~[IW005 MOV RW 100} Transfer instruction from IW005 to RW100

When executing the instruction, the word data corresponding to
XWO0O05 is read from the input module and is transferred to RW100,
(The XWQ05 data is not affected)

Direct output registers

) . Codes Direct output registers.....OW
and Direct output devices put g

Direct output devices......O

Addresses | Direct input registers.......000-255 (correspond to output registers (YW))
Direct input devices........ 0000-255F {correspond to cutput devices (Y))

Functions | When instructions are executed using direct output registers/direct output
devices, data is stored in the corresponding output registers/output
devices (YW/Y). Then, this output register {YW) data is written directiy to
the corresponding output module. These registers/devices are used
when using the T3 as the direct input/output system (direct system) and
not the batch input/output system (refresh system).

Example) 00020

=+ Coil 00020
When the instruction is executed, the data (ON/OFF data) corresponding

to the left link state is stored in Y0020. Then the 16-bit data of YWQ02 is
written to the corresponding output module.

Auxiliary registers

i i Codes Auxiliary registers.....RW
and Auxiliary devices v red

Auxiliary devices...... R

Addresses | Output registers........ 00G-511 (512 words)
Qutput devices......... 0000-511F
(corresponding to one bit in a register, 8192 points)

Functions | These are general purpose registers/devices which can be used for
temporary storage of execution resuits in a program. An auxiliary
register is used for storing 16-bit data, An auxiliary device indicates 1
bit in an auxiliary register.

Auxiliary registers/devices can be designated as retentive memory areas,

160 PROSEC T3

PART 3 PROGRAMMING INFORMATION 3. User Data

Special registers

. . Codes Special registers.....SW
and Special devices P J

Special devices......S

Addresses | Special registers.....000-255 (256 words)
Special devices......0000-255F
(corresponding to one bit in a register, 4096 points)

Functions | These are registers/devices which have special function such as fault
flags (Error dowrnvWarning) which are set when the CPU detects a
malfuction; timing relays and clock calendar data (year, month, day,
hour, minute, second, day of week) which are updated by the CPU;
flags/data which the user sets for.executing'operational control of the
sub-programs. For details, see the following table.

Timer registers

\ . Codes Timer registers.....T
and Timer devices 9

Timer devices...... T.

Addresses | Timer registers.....000-511 (512 words)
Timer devices......000-511 (512 points)

Functions The timer registers are used together with timer instructions (TON,
TOF, §8, TRG), and store elapsed fime (increment system) when the
timer is operating. Also, the timer devices are linked to the operation
of the timer registers with the same address, and store the output
results of timer instructions. TO00 to TO63 works as 0.01 sec timers
and T084 to T511 works as 0.1 sec timers. The timer registers can be
designated as retentive memory areas.

Counter registers

i Codes Counter registers....... C
and Counter devices 9

Counter devices......... C.

Addresses | Counter registers.....000-511 (512 words)
Counter devices......000-511 (512 points)

| Functions The counter registers are used together with counter instructions
{CNT, U/D), and store the current count value when the counter is
operating. Also, the counter devices are linked to the operation of the
counter registers with the same address, and store the output results
of counter instructions. The counter registers can be designated as
retentive memory areas.

Data registers Code b

Addresses | 0000-8191(8192 words)

Functions Gieneral-purpose registers which can be used for such purposes as a
temporary memaory for arithmetic results and the storage of control
parameters. Apart from the fact that bit designation is not possible,
they can be used in the same way as auxiliary registers. Data
registers can be designated as retentive memory areas.

Also, when a peripheral memory is used, D0000-D4095 become
subjects for the initial load. In the 'memory protect' state {P-RUN),
data writing to D0000-D40895 is prohibited.

User's manual - Functions 1 61

3. User Data

PART 3 PROGRAMMING INFORMATION

Link registers
and Link device
(TOSLINE-S20)

Link registers
and Link relays
(TOSLINE-F10)

File registers

Index registers

Codes Link registers.....W
Link devices......Z

Addresses | Link registers.....0000-1023 (1024 words)

Lind devices......0000-511F (corresponding to the leading 512 words of
the register, 8192 points)

Functions | Used for a data link by the TOSLINE-S20. For the leading 512 words
(WO0000-W0511) of the link registers, bit designation is possible as link
devices {Z0000-2511F).

For areas not aliocated to TOSLINE-S20, they can be used in the
same way as auxiliary registers ant! data registers. S

Codes Link registers.....LW
Link refays.........L

Addresses | Link registers.....000-255 (256 words)

Link relays......... 0000-255F (4096 points})

Functions Used as registers/relays for remote I/O by the TOSLINE-F10.

When TOSLINE-F10 is not used, they can be used in the same way as
auxiliary relays.

Code F

Addresses | 0000-8191 (8192 words)

Functions | Can be used in the same way as data registers for such as storing
control parameters and storing field collection data. Bit designation is
not possible. The whole file register area is retained for power off.
The file registers can also be used for the sampling buffer.

Codes 1, J, K (3 types, 3 words)

Addresses | None

Functions | When registers (apart from index registers) are used by instructions,

apart from the normal address designation system (direct address
designation, for instance D0100), indirect designation (indirect address
designation, for instance D0100.1) is possible by using the index
registers.

(If, for instance the content of | is 5, DO100.| indicates D0105)

| For indirect address designation, see Section 3.4. -

162 PROSEC T3

PART 3 PROGRAMMING INFORMATION 3. User Data

Tables of special registers/special relays are shown below.

Overall map

Register Content

SWo000 Operation mode, error flags, waming fiags

SWO001 CPU error-related flags

SWo02 I/O error-related flags

SWO003 | Program error-related flags, IC memory card status

SW004 Timing relays

SWO005s Carry flag, error flag

SWo06 Flags related to error during program execution

SWZOOT Clock-calendar data

SWo13 (Year, month, day, hour, minute, second, day of the week)

Swo14 Flags related to bit pattern check/data validity check

SWo15 Flags related to I/O error mapping, etc.

SWO016

{ Diagnosis display record (system diagnosis)
SW033
SW034

{ Annunciator relay (system diagnosis)
SWO037

SW038 Reserve (for future use)

SW039 interrupt program execution status

SWo40 Sub-program execution control

SWo41 Sub-program execution status
sSwo42

{ Sub-program execution intervals (for cyclic mode)
Swo44

- SWO045 - |- Power interruption continuous operation time

SW046
! IYO error map
SW049

SWO050
{ Reserve (for future use)
SWO077

User's manual - Functions 1 63

3. User Data - PART 3 PROGRAMMING INFORMATION

Overall map (continued)

Register Content
SWO078

{ TOSLINE-F10 commands/status
SW093
SW094

{ TOSLINE-F10 scan error map

SW109

SW110 | TOSLINE-S20 CH1 station status

SWiti TOSLINE-S20 CH2 station status

SwWi12
{ TOSLINE-S20 CH1 online map
SW115

SW116
{ TOSLINE-S20 CH2 online map
SW119

SwW120
{ TOSLINE-S20 CH1 standby map
Sw123

SW124
! TOSLINE-S20 CH2 standby map
SWi27

SW1i28
{ TOSLINE-S20 scan healthy map
SW191

SW192
{ Reserve (for future use)
SWas5

164 PRrOSEC T3

PART 3 PROGRAMMING INFORMATION

3. User Data

%25%2' Name Function
S0000 0: Initializing 4: HOLD mede B: D-STOP
S0001 1: HALT mode 6: ERROR mode D: 8-HALT
Operation mode
S0002 2: RUN mode 9: D-HALT E: S-RUN
$0003 3: Run-F mode A: D-RUN F: 5-STOP
S0004 | CPU error {Down) ON when error occurs (OR condition of related flag in SWO001)
S0005 | VO error (Down) ON when error oceurs (OR condition of related flag in SW002)
50006 .| Program error {Down) ON when.erronoccurs.{OR cendition-of related flag-in SW003)
ON when EEPRCM number of writing times 100,000 exceeded
50007 | EEPROM alarm (Warning) .]
(operation continues)
S0008 | Constant scan delay {Warning) ON when actual scan time exceeds the constant scan time setting
S0009 i I/Q alarm (Warning) ON when |/O error detected by I/O error mapping
SO000A | Calendar LS error (Waming) ON when clock-calendar data fault {operation continues)
S000B
Reserve (for futuer use)
S000C
S000D | TOSLINE-F10 error (Waming) ON when TOSLINE-F10 error (operation continues)
SO00E | TOSLINE-S20 error (Warning) ON when TOSLINE-S20 error (operation continues)
" SO00F | Battery voltage low (Warning) ON when battery voltage low (operation continues)
50010 | System ROM error {Down) ON when system ROM error
80011 | Sytemr RAM error (Down) ON when system RAM error
80012 | Program memory error (Downy) ON when program memoty {(RAM) etror
S0013 | EEPROM error (Down) ON when EEPROM error
S0014 | 1IC memory card error (Down) ON when IC memory card error
S0015 | LP error (Down) ON when language processor (LP) error
S0016 | Main CPU error {Down) ON when main CPU error
S0017
50018
80019 Reserve (for future use)
SC01A
S001B
S001C | Power interrupution recovery
S001D | Power interrupution detect
S001E Reserve (for future use)
S001F ‘| Watch-dog timer error {Down) ‘ON when watch-dog timer error occurs

*1)} This area is for reference only {Do not write)
*2)} The error flags are reset at the beginning of RUN mode.

User’s manual - Functions 1 65

3. User Data PART 3 PROGRAMMING INFORMATION

Special Name

device Function

50020 | YO bus error (Down) ON when /O bus error occurs

ON when I/O mismatch error occurs (allocation infomation and

50021 | ¥O mismatch error (Down) .
mounting state do not agree)

50022 | /O response error (Down) ON when no 1/O response ocecurs

50023 | l/O parity error (Down) ON when /O data parity error occurs.

50024 | Expansion power error (Down) ON when expansion unit power error occurs

S0025 | /O interrupt error (Warning) ON.when unused-/O interrupt occurs {operation continues) .. -
50026 | Special module error (Warning) ON when fault occurs in special module (operation continues)
50027
50028
S0029
S002A
s002B Reserve(for future use)
S002C
$002D
S002E
S002F
S0030 | Program error ON when program error accurs {OR condition of SWO006 fiags)
S0031 | Scan time error {Down}) ON when scan cycle exceeds the limit value

50032
S0033
S0034
$50035
S0036
50037 Reserve (for future use)
S0038
S0039
S003A
5003B
S003C
S003D | IC memory card mounting status | ON when IC memory card mounted
S003E | IC memory card write protect ON when in write protect state

IC memory card battery low)
S003F) ON when voltage drop of battery housed in IC memory card.
{(Waming)

*1) This area is for reference only (Do not write)
*2) The error flags are reset at the beginning of RUN mode.

166 PROSEC T3

PART 3 PROGRAMMING INFORMATION 3. User Data

Special

device Name Function
S0040 | Timing relay 0.1sec 0.05sec OFF/0.05sec ON (Cycle 0.1sec)
S0041 | Timing relay 0.2sec 0.1sec OFF/0.1sec ON (Cycle 0.2sec)
50042 | Timing relay 0.4sec 0.2sec OFF/0.2sec ON (Cycle 0.4sec)
50043 | Timing relay 0.8sec 0.4sec OFF/0.4sec ON (Cycle 0.8sec) | All OFF when RUN
S0044 | Timing relay 1.0sec 0.5sec OFF/0.5sec ON (Cycle 1.0sec) stars up
$0045 | Timing relay 2.0sec 1.0sec OFF/1.0sec ON {Cycle 2.0sec)
50046 | Timing retay 4.0sec - | 2.0see-OFF/2.0sec ON-(Cycle 4.0se¢) - 4 -- -
80047 | Timing relay 8.0sec 4.0sec OFF/4.0sec ON (Cycle 8.0sec)
50048
S0049
S004A
Reserve (for future use)
S004B
5004C
S004D
S004E | Always OFF Always OFF
S004F | Always ON Always ON
S0050 | CF (carry flag) Used by instructions with carry

ON through error occurrence when executing instructions
(linked with each error flag of SWO006)

S0051 | ERF (Error flag)

50052
$0053
50054
50055
50056
50057
S0058
50059
S005A
50058
S005C
005D
SC05E
S005F

Reserve (for future use)

*) This area {except for S0050, S0051) is for reference only (writing is ineffective)

User’s manual - Functions 167

| 3. User Data

PART 3 PROGRAMMING INFORMATION

%‘;3%2' Name Function
S0080 | lllegal instruction detection (Down) { ON when illegal instruction detected
S0061
S0062 Reserve (for future use)
S0063
. ON when address range exceeded by indirect address designation
50064 | Boundary error (Waming) _
(operation continues)
S0065 Address boundary error { ON-when destination (indirest} error-by.CALL instruction-or-JUMP
(Wamning) instruction (operation continues)
Program memory parity error) i
50066 ON when parity error occurs in user program memory
{Down)
$§0067 | Data memory parity error (Down) | ON when parity error occurs in user data memory
50068 | Division error (Warning) ON when error occurs by division instruction (operation continues)
$0069 | BCD data error {(Waming) ON when fault data detected by BCD instruction (operation continues)
.) ON when table limits exceeded by table operation instruction
S006A | Table operafion error (Warning))
{operation continues)
S006B | Encode error {Warning) ON when error occurs by encode instruction (operation continues)
S006C Address registration error ON when destination for CALL instruction or JUMP instruction
(Warning) unregistered {operation continues)
. . ON when nesting exceeded by CALL instruction, FOR instruction or
S006D | Nesting error (Warning)) .) .
MCSn instruction (operation continues)
S006E
Reserve (for future use)
SC06F

*1) The error flags are reset at the beginning of RUN mode.
*2) For warning flags, resetting by user program is possible.

i%?sctig:, Name Function
SWO007 : Calendar data (Year) Last 2 digits of the calendar year (91, 92, ...}
SW008 | Calendar data (Month) Month (01-12)
SWO009 | Calendar data (Day) Day (01-31)
SW010 | Calendar data (Hour) Hour (00-23) Stored in lower 8 bits
SWO011 | Calendar data (Minute) Minute (00-59) by BCD code
SWO012 | Calendar data (Second) Second {00-59) '
SW013 | Calendar data (Day of the week) | Day of the week (Sunday=00, Monday=
01, ...Saturday=06)

*1) The clock-calendar data setting is performed by calendar setting instruction (CLND) or by calendar setting
operation by programmer. (It is ineffective to write data directly to the special registers)
*2) When the data cannot be read correctly due to the calendar LSI fault, these registers become HOOFF.

*3) Calendar accuracy is = 30 seconds/month.

168

PROSEC T3

PART 3 PROGRAMMING INFORMATION

3. User Data

Special
device

Name

Function

50140

Bit/register check

Bit pattern/register value check is executed by setting ON

50141

Bit/register check result

ON when either S0142-80146 is ON

80142

Bit pattern check result

ON when bit pattern check error detected

50143

Register value check result(1)

ON when register value check error detected for register 1

50144

Register value check result(2)

ON when register value check error detected for register 2

50145

Register value check resuit(3)

ON when register value check error detected tor register 3

50146

Register value check result{4) - -

ON when register.value-check error-detected for. register 4

50147

50148

50148

S014A

S014B

5014C

S5014D

SO14E

S014F

Reserve (for future use)

S0150

/O error mapping

I/Q error mapping is executed by setting ON

S0151

80152

S0153

50154

80155

S0156

50157

50158

50159

S015A

80158

S015C

S015D

S015E

Reserve (for future use)

SO015F

Checkpoint for bit/register check

‘ON: after program execution

OFF: before program execution

User’s manual - Functions 169

3. User Data

PART 3 PROGRAMMING INFORMATION

;Se%?ggf. Name Function

SWO016 | First error code * The designated error codes (1-64) are stored in order of execution
SWO017 | Number of registration in SW018-SW033 (the earlier the code, the lower the address),
SW018 | Error code (First) and the number of registration (SWQ17) is updated.

SW019 | Error code (2) » The earliest error cede occurring (the content of SWO018) is stored
SW020 | Error code (3) in the leading error code (SWO016).

SW021 | Error code (4) * The registered error codes are cancelled one by one by the
8SwW022 | Error code (5) - execution of the diagnostic. display reset instruction-or.by a reset
SW023 | Etror code (6) operation by the programmer.

SWO024 | Error code (7) At this time, the number of registers is reduced by 1 and the
SW025 | Error code (8) storage positions of the error codes are shifted up.

SW026 | Error code (9)

SW027 | Error code (10)

SwW028 | Error code (11)

SWO029 | Error code (12)

SWO030 | Error code (13)

SWO031 | Error code (14)

8W032 | Error code (15)

SW033 | Error code (186)

%g\e’ic;gl Name Function

50340 | Annunciator rejay 1 » The annunciator relays corresponding to the error codes registered
S0341 | Annunciator relay 2 in SW018-SW033 become ON

80342 | Annunciator relay 3

$0343 | Annunciator relay 4

50344 | Annunciator relay 5

80345 | Annunciator relay 6

50346 | Annunciator relay 7

S0347 | Annunciator relay 8

50348 | Annunciator relay 9

50349 { Annunciator relay 10

S034A | Annunciator relay' 11

S034B | Anounciator relay 12

5034C | Annunciator relay 13

S034D | Annunciator rejay 14

S034E | Annunciator relay 15

8034F | Annunciator relay 16

170 PROSEC T2

PART 3 PROGRAMMING INFORMATION 3. User Data

%gt‘e’ci:égl Name Function
S0350 | Annunciator relay 17 + The annunciator relays corresponding io the error codes registered
$0351 | Annunciator relay 18 in SW018-SW033 become ON

80352 | Annunciator relay 19
80353 | Annunciator relay 20
S0354 | Annunciator relay 21t
S0355 | Annunciator relay 22
S0356 | Annunciator relay 23
80357 | Annunciator relay 24
$0358 | Annunciator relay 25
S0359 | Annunciator relay 26
S035A | Annunciator relay 27
S035B | Annunciator relay 28
S035C | Annunciator relay 29
S035D | Annunciator relay 30
S035E | Annunciator relay 31
S035F | Annunciator relay 32
S0360 | Annunciator relay 33
$0361 | Annunciator relay 34
S0362 | Annunciator relay 35
80363 | Annunciator relay 36
80364 | Annunciator relay 37
50365 | Annunciator relay 38
80366 | Annunciator relay 39
80367 | Annunciator relay 40
S0368 | Annunciator relay 41

80369 | Annunciator relay 42
S036A | Annunciator relay 43
S036B | Annunciator relay 44
S036C | Annunciator relay 45
80360 | Annunciator relay 46
SO036E | Annunciator relay 47
S036F | Annunciator relay 48

User’s manual - Functions 171

3. User Data PART 3 PROGRAMMING INFORMATION

Special .

device Name Function

S0370 | Annunciator relay 49 = The annunciator relays corresponding to the error codes registered
80371 | Annunciator relay 50 in SW018-5W033 become ON

50372 | Annunciator reiay 51
S0373 | Annunciaior relay 52
S0374 | Annunciator relay 53
80375 | Annunciator relay 54
80376 | Annunciator reiay 55
80377 | Annunciator relay 56
50378 | Annunciator relay 57
50379 | Annunciator refay 58
S037A | Annunciator relay 59
$S037B | Annunciator relay 60
S037C | Annunciator relay 61
S037D | Annunciator relay 62
S037E | Annunciator relay 63
S037F | Annunciator relay 64

Special .
device Name Function

S0390 | Timer interrupt execution status | ON during execution

50391 | /O interrupt #1 execution status | ON during execution

50382 : /O interrupt #2 execution status | ON during execution

50383 | /O interrupt #3 execution status | ON during execution

80394 | /O interrupt #4 execution status | ON during execution

$0395 | VO interrupt #5 execution status | ON duting execution

50396 | /O interrupt #6 execution status | ON during execution

S0397 | I/O interrupt #7 execution status | ON during execution

50398 | I/O interrupt #8 execution status | ON during execution
S0399
S039A
50398
5039C Reserve (for future use)
5039D
S039E
S036F

172 PROSEC T3

PART 3 PROGRAMMING INFORMATION

3. User Data

Special .
device Name Function
50400 | Hot restart mode ON when hot restart mode (setting by program is available)
50401 | HOLD device ON during HOLD mode (setting by program is avaitable)
S0402 Reserve (for future use)

Sub-program #2 mode setting
$0403 | Sub-program #2 mode

(OFF: Normal ON: Special)
S0404 Reserve (for future use)

) -Sub-program.#2-execution mode-setting

80405 | Sub-program #2 execution mode : .

(OFF: One time ON: Cyclic)

Sub-program #3 execution mode setting
50406 | Sub-program #3 execution mode

(OFF: One time ON: Cyclic)

. Sub-program #4 execution mode setting

S0407 | Sub-program #4 execution mode

(OFF: One time ON: Cyclic)
50408 Reserve (for future use)
S0409 | Sub-program #2 request Sub-program #2 request command (Execution request by setting ON}
S040A | Sub-program #3 request Sub-program #3 request command (Execution request by setting ON)
S040B | Sub-program #4 request Sub-program #4 request command (Execution request by setting ON)
5040C
S040D

Reserve (for future use)
S040E .
S040F
S0410 | Sub-program #1 execution status | ON during sub-program #1 execution
S0411 | Sub-program #2 execution status | ON during sub-program #2 execution
S0412 | Sub-program #3 execution status | ON during sub-program #3 execution
S0413 | Sub-program #4 execution status | ON during sub-program #4 execution
S0414 Reserve (for future use)
50415 | Sub-program #2 delay (Warning) | ON when sub-program #2 execution delay {cyclic mode)
50416 1 Sub-program #3 delay (Warning) | ON when sub-program #3 execution delay (cyclic mode)
50417 | Sub-program #4 delay (Waming) | ON when sub-program #4 execution delay (cyclic mode)
50418
50419
SO41A
S041B

Reserve {for future use)
5041C
S041D
S041E
S041F

User’s manual - Functions 1 73

3. User Data PART 3 PROGRAMMING INFORMATION

rsez?ggnl' Name Fuﬁction
SW042 | Sub-program #2 interval Number of scans for sub-program #2 cyclic mode
SW043 | Sub-program #3 interval Number of scans for sub-program #3 cyclic mode
SW044 | Sub-program #4 interval Number of scans for sub-program #4 cyclic mode
SW045 | Continuous operation time Continuous operation time setting for power interruption shut down
%‘;ﬁﬂg‘ Name Function
80460 | I/O error map #0-0 ON when l/O error detected in unit 0-slot 0
50461 | VO error map #0-1 ON when /O error detected in unit 0-slot 1
50462 | /O error map #0-2 ON when /O error detected in unit 0-slot 2
$S0463 | /O error map #0-3 ON when /O error detected in unit 0-slot 3
S0464 | YO error map #0-4 ON when I/O error detected in unit O-slot 4
S0465 ¢ /O error map #0-5 ON when /O error detected in unit 0-slot 5
80466 | /O error map #0-6 ON when /O error detected in unit 0-slot &
S0467 | /O error map #0-7 ON when /O error detected in unit 0-slot 7
S0468 | I/O error map #0-8 ON when /O error detected in unit O-slot 8
50469 | /O error map #0-9 ON when l/O error detected in unit O-slot @
S046A
50468
S046C

Reserve {for future use)
S046D
S046E
S046F
50470 | I/O error map #1-0 ON when I/O error detected in unit 1-slot 0
S0471 | /O error map #1-1 ON when /O error detected in unit 1-slot 1
80472 | VO error map #1-2 ON when /O errcr detected in unit 1-slot 2
S0473 | /O error map #1-3 ON when 1/O error detected in unit 1-siot 3
S0474 | /O error map #1-4 ON when |/O error detected in unit 1-slot 4
50475 | I/O emror map #1-5 ON when [/O error detected in unit 1-slot 5
S0476 | YO error map #1-6 ON when /O error detected in unit 1-slot 6
80477 | VO error map #1-7 ON when /O error detected in unit 1-slot 7
80478 | /O error map #1-8 ON when /O error detected in unit 1-slot 8
50479 | /O error map #1-9 ON when |/O error detected in unit 1-slot 9
S047A | YO error map #1-10 ON when 1/O error detected in unit 1-slot 10
S0478B '
S047C
S047D Reserve (for future use})
S047E
S047F

174 PROSEC T3

PART 3 PROGRAMMING INFORMATION

3. User Data

%gsggl Name Function
S0480 | I/O error map #2-0 ON when /O etror detected in unit 2 - slot 0
$0481 | VO error map #2-1 ON when /O error detected in unit 2 - slot 1
50482 | /O error map #2-2 ON when /O error detected in unit 2 - slot 2
50483 | IO etror map #2-3 ON when I/O error detected in unit 2 - slot 3
S0484 | I/O error map #2-4 ON when I/O error detected in unit 2 - slot 4
50485 | I/O error map #2-5 ON when I/O error detected in unit 2 - slot 5
50486 | I/O error map #2-6 - {-ON when I/O error deiected iR unit 2 - slot 6
50487 | YO error map #2-7 ON when /O error detected in unit 2 - slot 7
S0488 | VO error map #2-8 ON when (/O error detected in unit2 - slot 8
$0489 | I/O error map #2-9 ON when /O error detected in unit 2 - siot 9
S048A { /O error map #2-10 ON when /O error detected in unit 2 - slot 10
S048B

5048C

$048D Reserve (for future use)

S048E

S048F

S0490 | /O error map #3-0 ON when I/O error detected in unit 3 - siot 0
S0491 | /O error map #3-1 ON when /O error detected in unit 3 - slot 1
80492 | KO error map #3-2 ON when IO error detected in unit 3 - slot 2
50493 | /O error map #3-3 ON when /O error detected in unit 3 - slot 3
80494 | VO error map #3-4 ON when /O error detected in unit 3 - sliot 4
50495 | I/O error map #3-5 ON when I/C error detected in unit 3 - slot 5
80496 | /O error map #3-6 ON when /O error detected in unit 3 - slot 6
50497 | I/O error map #3-7 ON when |/C error detected in unit 3 - slot 7
S0498 | IO error map #3-8 ON when /O error detected in unit 3 - slot 8
50499 | IO error map #3-9 ON when /O error detected in unit 3 - slot 9
S049A | /O error map #3-10 ON when {/O error detected in unit 3 - slot 10
S049B

S049C

S049D Reserve (for future use)

S049E

S049F

User's manual - Functions 1 75

3. User Data PART 3 PROGRAMMING INFORMATION

?:Ig?f%gl Name Function

S0780 Transmission status ON during transmission

80781 Qutput inhibit status ON when output inhibit mode

50782 Re-configuration ON during re-configuration

80783 Reserve (for future use)

S0784 Scan transmission error | ON when scan transmission efror occurs
80785
50786
S0787 | TOSLINE-F10
50788 | CH1 command Transmission stop Transmission stop by setting ON
80789 Output inhibit Output inhibit by setting ON
S078A
50788
S078C
S078D
S078E
S078F
S0790 Transmission status ON during transmission

1

-Reserve {for future use)

Reserve (for future use)

S0791 Scan transmission ON during scan transmission
50792
50793 Reserve {for future use)}
50794
S0795 MS operation mode OFF: Normal mode ON: Test mode
80796
80797 | TOSLINE-F10
50798 | CHt status

S$0799
S079A
50798
S079C
5079D
S079E
S079F

Reserve (for future use)

") Refer to the TOSLINE-F10 manual for details.

176 PrOSEC T3

PART 3 PROGRAMMING INFORMATION 3. User Data

Special :
register Name Function

SW080 | TOSLINE-F10 CH2 command » Bit assignment in the register is the same as SW078 and SW(79.
SW081 | TOSLINE-F10 CH2 status
SWo082 | TOSLINE-F10 CH3 cammand
Swo083 | TOSLINE-F10 CHS3 status
SwW084 | TOSLINE-F10 CH4 command
Swo08s | TOSLINE-F10 CH4 status
SW086 | TOSLINE-F10 CHS command
SW087 | TOSLINE-F10 CHS status
SW088 | TOSLINE-F10 CH6 command
SW089 | TOSLINE-F10 CH6 status
SW090 | TOSLINE-F10 CH7 command
SW091 | TOSLINE-F10 CH7 status
SwW092 | TOSLINE-F10 CH8 command
SW003 | TOSLINE-F10 CHB status

?e%?gtlg: Name Function

SW094 LWO000~LWQ15 * The corresponding bit comes ON when the LW
SWQ95 LWO016~LWO031 register is not updated normally.

SwWoge L W0Q32~-LW047

SW097 LWO048~ L W063 » The lowest address of LW register corresponds
SW098 LW064~LWQ78 to bit 0 in the SW register, and in the order.
SW099 LW0B0~LWO0S5

SW100 LWOg6~LW111

SW101 | TOSLINE-F10 Lwii2~Lw127

SW1i02 | scan error map Lw128~LW143

SW103 LW1i44~1LW159

Swi04 LW160~LW175

SW105 LW176~LW191

SW106 Lw1ig2~Lw207

SW107 LW208~Lw223

SW108 LW224~LW239

SW109 | LW240~LW255

User’s manual - Functions 177

3. User Data

PART 3 PROGRAMMING INFORMATION

%gt‘e’?cigl Name Function
$1100 Test mode ON when test mode
S1101
s1102 Reserve(for future use)
51103 .
S1104 Master/slave ON when master station
$1105 Scan inhibit ON when scan transmission inhibited
81106
51107 | TOSLINE-S20
$1108 | CH1 station status

Reserve(for future use)
51109
S110A
S110B
S110C Online ON when online mode
S$110D Standby ON when standby mode
S110E Offline ON when offline mode
S110F Down ON when down mode
51110 Test mode ON when test mode
S1114
S1112 Reserve(for future use)
51113
S1114 Master/slave ON when master station
S1115 Scan inhibit ON when scan transmission inhibited
S1116
S$1117 | TOSLINE-S20
$1118 | CH2 station staius

Reserve(for future use)
51119
S111A
S111B
S111C Online ON when oniine mode
S1110 Standby ON when standby mode
SM11E Offline ON when offline mode
S111F Down ON when down mode

*} Refer to the TOSLINE-S20 manual for details.

178 PROSEC T3

PART 3 PROGRAMMING INFORMATICN

3. User Data

fe%?sctigi Name Function

sSwii12 station No.1~No.16 ¢ The corresponding bit is ON when the station is
SW113 | TOSLINE-S20 station No.17 ~No.32 online.

SW114 | CH1 online map station No.33~No.48 * The lowest station number corresponds to hit O in
SW115 station No.48~No.64 the SW register, and in the order.

SW116 station No.1~No.16

SW117 | TOSLINE-S20 station No.17~No.32

SW118 | CH2 online map station No.33~No.48

Swi11t9 station No.49~No.64

SwW120 station No.1~No.16 * The corresponding bit is ON when the station is
Sw121 | TOSLINE-S20 station No.17~No.32 standby.

SW122 | CH1 standby map station No.33~No.48 » The lowest station number corresponds to bit 0 in
SW123 station No.49~No.64 the SW register, and in the order.

Swiz24 station No.1~No.16

SW125 | TOSLINE-S20 station No.17~No.32

Swi126 | CH2 standby map station No.33~No.48

sSwi27 station No.49~No.64

Special Name Function

register

Swi2s WO0000~W0015 » The corresponding bit is ON when the W register
SwW1238 WO0016~W0031 is updated normally.

SW130 WO0032~W0047

SW13t W0048~WO0063 * The lowest address of W register corresponds to
SW132 WO0064~W0079 bit 0 in the SW register, and in the order.
SW133 WO0080~W0095

SwW134 WO0096~W0111

SW135 | TOSLINE-S20 Wo112~w0127

SW136 | scan healthy map WiQ128~W0143

SW137 WO0144~W0159

SW138 WQ0160~W0175

SW139 WO0176~W0191

SW140 wWO0192~W0207

Swi41 W0208~W0223

Swi142 W0224~W0239

SW143 W0240~W0255

User's manual - Functions 179

3. User Data

PART 3 PROGRAMMING INFORMATION

?elag?sctigl Name Function
SW144 WO0256~W0271 * The corresponding bit is ON when the W register
Sw145 W0272~W0278 is updated normaily.
SWi46 Wo0288~W0303

Sw147 W0304~W0319 * The lowest address of W register corresponds 1o
Sw148 W0320~W0335 bit 0 in the SW regisier, and in the order.
SW149 W0336~W0351

SW150 W0352~W0367

SW151 W0368~W0383

SWi52 W0384~W0399

SW153 W0400~-W0415

SW154 W0416~~W0431

SW155 W0432~W0447

SW156 W0448~W0463

SW157 W0464~W0479

SW158 | TOSLINE-520 W04380~W0495

SW159 | scan healthy map W0496~W0511

SW160 WO0512~W0527

SwW161 WO0528~W0543

SwWi1e62 W0544~W0559

SW163 WO0560~WO0575

SWis4 W0576~W0591

SwW1e5 W0592~W0607

SW166 W06038~W0623

SW167 W0624 ~-W0639

Sw168 W0640~-W0655

Swia9 WO0656~W0671

SW170 WO06B72~-WO0G87

SW171 W0688~W0703

Swi172 W0704~W0719

SW173 W0720~W0735

SW174 W0736~W0751

SW175 W0752~W0767

180 rrOSECT3

PART 3 PROGRAMMING INFORMATION 3. User Data

i%?g:: Name Function
SW176 WO0768~WO0783 " { » The corresponding bit is ON when the W register
SW177 WO784~W0799 is updated normally. '
SW178 WO0800~-W0815
SW179 Wo0816~W0831 » The lowest address of W register corresponds to
SW180 wWQs32~W0847 bit 0 in the SW register, and in the order.
SW18t WO0848~WO08B63
SW182 WO0864~W0879
swigs | | oLINE-S20 WO0880~W0895
scan healthy map
SWis4 WO0896~WO0g11
SwW185 wWo0912~W0927
SW186 W0928~-W0943
SwW187 W0944~W0959
Swias WO0960~W0975
SW189 W0976~W0991
SW190 WQ0992~W1007
SW1g1 W1008~W1023

User’s manual - Functions 1 81

3. User Data

PART 3 PROGRAMMING INFORMATION

33
Register data types

It has already been explained the register is “a location which stores 16
bits of data”. In the T3 instructions, the following types of data can be
processed using single registers or multiple consecutive registers.

* Unsigned integers (integers in the range 0 to 65535)

* Integers (integers in the range -32768 to 32767)

* BCD (integers in the range 0 to 9999 expressed by BCD code)

* Unsigned double-length integers (integers in the range 0 to
4294967295) B

* Double-length integers (integers in the range -2147483648 to
2147483647)

* Double-length BCD (integers in the range 0 to 99999999 expressed
by BCD code)

» Floating point data (real number in the range -3.40282 x 10 to
3.40282 x 10%)

However, there are no dedicated registers corresponding to the types
for processing these types of data. The processing of the register data
varies according to which instruction is used.

In other words, as shown in the following example, even when the
same register is used, if the data type of the instruction differs, the
processing of the register data will also differ.

Example)
When the value of DO005 is HFFFF (hexadecimal FFFF):

(1) In the unsigned comparison instruction (Greater than),
~[D0005 U > 100 |- decision output (ON when true)

The value of DOQOS5 is regarded as 65535 (unsigned integer),
therefore it is judged to be greater than the compared value (100)
and the output of the instruction becomes ON.

(2) In the (signed) comparison instruction (Greater than),

—{ Dooo5 > 100 - decision output (ON when true)

-.The value of DO005 is regarded as -1 (integer), therefore it is judged
not to be greater than the compared value (100} and the output of
the instruction becomes OFF.

In this way, since there is no classification of registers by data type, it is
possible to execute complex data operations provided their use is
thoroughly understood. However, in order to make the program easier
to see, it is recommended that registers be used by allocation by data
types (1 register is processed by 1 data type) as far as possible.

182 rroOsSEC T3

PART 3 PROGRAMMING INFORMATION 3. User Data

(1) Unsigned Integer
This is a 16-bit unsigned integer expressed by 1 register. The bit
configuration inside the register is as shown below.

(MSB) (LSB)
FEDCBAZG 9876543 21 0 <« Bitpositions

regster | | [[[[| T I 1]]]]]

Bit 0 is the least significant.bit (LSB),.and bit F.is.the most.
significant bit (MSB). The processable numerical value range is as
shown in the following Table.

NUTS;%%XI?IW Binary Expression Hg;&%igiim?]
65535 1111 1111 1111 1111 FFFF
65534 1111 1111 1111 1110 FFFE
I I I
1 0000 0000 0000 0001 0001
0 0000 0000 0000 0000 0000
— NOTE

VAV

When programming and when program monitoring, it is possible to
change between decimal numbers and hexadecimal numbers for
displaying/setting register data. When using a hexadecimal display,
“H" is attached before the numerical value.

Example) HB9AB (hexadecimal 89AB)

(2) Integer
This is a 16-bit integer expressed by 1 register. A negative number
is expressed by 2's complement.

(MSB) (LSB)

FEDCBA®S9GS8 7 654 3 21 0 -——Bitpositions
Regiser | | [[[| | [1] 111 []]]

SigIm bit Data \1(5 bits

The numerical value is expressed by the 15 bits from bit 0 to bit E.
Bit F expresses the sign (0 when positive, 1 when negative)

User’s manual - Functions 1 83

3. User Data PART 3 PROGRAMMING INFORMATION

Processable numerical range and expression format are shown in
the following Table.

Nur?gggi?:‘;:)alue Binary Expression H,?IS,%ZZEZ”,?‘
32767 o111 1111 1111 1111 7FFF
32766 0111 1111 1111 1110 7FFE

I I J

1 0000 0000 0000 0001 0001

0 0000 0000 0000 Q000 G001

-1 1111 1111 1111 1111 FFFF

I I I
-32767 1000 0000 0000 0001 8001
-32768 1000 0000 0000 0000 8000

The 2's complement is that the lower 16 bits become all 0 by adding
the 2's complement data and the original data.

Example)
o111 1111 1111 1111 (Binary)=32767
+ 1000 0000 0000 0001 (Binary)=-32767
1 0000 0000 0000 0000

In calculation, the 2’s complements of a numerical value can be
found by the operation of inverting each bit of that numerical value
and adding 1.

Example)
o111 1111 1111 11 (Binary)=32767
(bit inversion)
1000 0000 0000 0000 (Binary)=—32768
(add 1)
1000 0000 0000 0001 (Binary)=-32767

(3) BCD
BCD is the abbreviation of Binary Coded Decimal. BCD expresses
1 digit (0-9) of a decimal number by 4 bits of a binary number.
Therefore, 1 register can express the numerical value of a 4-digit
decimal number.

{MSB) (LSB)
F EDCBAUS9S8 7686543 21 0 -=—Bipositions
Register l l

_‘

184 rroseC T3

PART 3 PROGRAMMING INFORMATION 3. User Data

Processable numerical range and expression format are shown in
the following Table.

I — Hoaseci
9999 1001 1001 1001 1001 9999
9998 1001 1001 1001 1000 9998
I I f
10 0000 0000 0001 0000 0010
9 0000 Q000 0000 1001 . 0009
/ I ‘ i
1 0000 0000 0000 0001 0001
0 0000 0000 0000 0000 0000
_.NOTE
VAV

Basically, BCD is a data format used for data inputs from BCD-
output type numerical setting devices and data outputs to BCD-
input type numerical display devices. However, the T3 is provided
with dedicated instructions which execute the calculations on BCD
data as they stand.

(4) Unsigned Double-Length Integer
This is 32-bit unsigned integer which is expressed using 2 consecutive
registers. In the case of double-length data, the registers are
designatied in the form ®+1 «@. @ indicates the lower 16 bits and ®+1
shows the upper 16 bits. (®&+1 is the register following register @)

(MSB) (LSB)
F - - -- - -0 F - - - - - — 0 <—Bitpositions

| |)

A A

—— Register (&) = Lower 16 bits
— Register (A)+1 = Upper 16 bits

Exampie) When processing an unsigned double-iength integer in
double length register D0201+D0200, D0200 becomes & and
D0201 becomes @+1. D0200 becomes the lower side and D0201
becomes the upper side.

In programming, when D0200 is entered in the position which
designates the double-length operand, D0201+D0200 is
automatically displayed.

The numerical value range in which unsigned double-length integers
can be processed is shown in the table on the following page.

User’'s manual - Functions 1 85

3. User Data : PART 3 PROGRAMMING INFORMATION

Hexadecimal Expression
Numerical Value)
Register (A3 +1 Register (&)
4294967295 FFFF FFFF
J f !
65536 0001 0000
65535 0000 FFFF
/ J f
0 0000 ' 0000
NOTE
VAV

Both odd-numbered addresses and even-numbered addresses may
be used as register @.

(5) Double-Length Integer
This is 32-bit integer which is expressed using 2 consecutive
registers. Negative numbers are expressed by 2's compiement.
(See (2) ‘Integers’)
The registers are designated in the form @+1 « ®. @ becomes the
lower and @+1 becomes the upper.
(MSB) {LSB)
FE--=---20 F - - = - - - 0 -«— Bit positions

]] | |
A L (i Register (& = Lower 16 bits

0 - E bits of register (B+1 = Upper 15 bits
—— F bit of register (A+1 = Sign bit (positive: 0, negative: 1)

The numerical value is expressed by the 31 bits from bit O of
register @ to bit E of register ®+1. The sign is expressed by bit F
of register @®+1 (0 when positive, 1 when negative).

Example) When a double-length integer is processed by registers
D1002+D1001, D1001 becomes @ and D1002 becomes @+1, and
D1001 is the lower and D1002 is the upper. Also, the sign is
expressed by the bit F of D1002.

In programming, when D1001 is entered in the position which
designates the doubie-length operand, D1002+D1001 is
automatically displayed.

The numerical vaiue range in which double-length integers can be
processed is shown in the table on the following page.

186 PROSEC T3

PART 3 PROGRAMMING INFORMATION 3. User Data

Hexadecimai Expression
Numerical Value Register (1 S

2147483647 7FFF FFFF

J J I
65536 0001 0000
65535 0000 FFFF

I I J
o 0000 0000
-1 FFFF FFFF

I) I
-65536 FFFF 0000
-65537 FFFE FFEF

J I f
-2147483648 8000 0000

(6) Double-Length BCD
This is 8-digit BCD data which is expressed by using 2 consecutive
registers.

(MSB) (LSB)
F~C B-8 7-4 3-0 F-C B-8 7-4 3-0 <« Bitpositions

N N N s O N

P N N N P i)
107 10° 10° 1o 190 10° 10 10°

. —

Register (A+1 Register (&)

The registers are designated in the form @+1¢®, and @ becomes
the lower 4 digits while ®+1 becomes the upper 4 digits.

Example) When processing a double-length BCD by registers
XW001 «XW000, XWO000 becomes @ while XW001 becomes @ +1
and XW000 becomes the lower 4 digits while XW001 becomes the
upper 4 digits.

The following table shows the numerical range and the expression
format in which double-length BCD data can be processed.

Hexadecimal Expression
Numerical Value
Register (&+1 Register (&)
99999999 9999 9999
f ! J
1 0000 0001
0 0000 0000

User's manual - Functions 1 87

3. User Data PART 3 PROGRAMMING INFORMATION

(7) Floating Point Data
This is a real number which is expressed using 2 consecutive
registers (32-bit).
The registers are designated in the form ®@+1+@. Internally, the
foilowing format is used. (conforms to IEEE754)

(MSB) (LSB)
FE--new-- 7 B----- 0 Fromemmmmemcemcacus 0 <«—— Bit positions
Exponent Mantissa (23 bits)
(8 bits)
Sign (0: +, 1:-)
Register &r+1 Register &

Value = (Sign)1.(Mantissa) x 2(®wment12n

The floating point data is used with the following floating point
instructions. Therefore, there is no need for user to consider the
format.

Conversions (Floating point < Double-length integer)
Floating point arithmetics

Floating point comparisons

Floating point functions (Trigonometrics, square root, etc.)
Floating point process operations (Integral, PID, etc.)

The following table shows the numerical range in which the fioating
point data can be processed.

Numerical value Expression Remarks
3.40282 x 10® 3.40282E38 Maximum
I i
1.17549 < 10 1.17549E-38 Nearest to 0
0 0
-1.17549 x 10* -1.17549E-38 Nearest to 0
i I
-3.40282 x 10% -3.40282E38 Minimum

188 PROSEC T3

PART 3 PROGRAMMING INFORMATION 3. User Data

3.4
Index modification When registers are used by instructions, the method of directly

designating the register address as shown in Example 1) below is
called ‘direct addressing’.

As opposed to this, the method of indirectly designating the register by
combination with the contents of the index registers (1, J, K) as shown
in Example 2) below is called the ‘indirect addressing’. In particular, in
this case, since the address is modified using an index register, this is
called ‘index modification’.

Example 1)
- RW 100 MOV D3500 }-

Data transfer instruction
Transfer content of RW100 to D3500

Example 2)
i J
-{ RW 100 MOV D3500 }-

Data transfer instruction {index modification attached)
Transfer content of RW(100+1) to D(3500+J)
(If =3 and J=200, the content of RW 103 is transferred to D3700)

There are 3 types of index register, |, J and K. Each type processes
16-bit integers (-32768 to 32767). There are no particular differences
in function between these 3 types of index register.

There is no special instruction for substituting values in these index
registers. There are designated as destination for normal instructions.

Example 1) Substituting a constant in an index register
- 64 MOV | - (Substitute 64 in index register)
-2 MOV J 1~ (Substitute -2 in index register J)
Example 2) Substituting register data in an index register
- D0035 MOV K- (Substitute the value of DO035 in index
register K)

-{ RW078 MOV | - (Substitute the value of RW078 in index
register |)

User's manual - Functions 1 89

3. User Data PART 3 PROGRAMMING INFORMATION

Example 3) Substituting the result of an operation in an index register
- RW200-30—1I]
(Substitute the result of subtracting 30 from RW200 in |)
—{ XW004 ENC (4) J I

(Substitute the uppermost ON bit position of XW004 in J
(encode))

—NOTE
VAV

Although, basically, index registers are processed as single-iength
(16 bits), when, for instance, using an index register as the storage
destination for a instruction which becomes double-length as the
result of a multiplication instruction or the like, only the combinations
JelorKeJare effective. In this case, it becomes J» | by
designating | in the double-length operand position, and J becomes
upper while | becomes lower. In the same, by designating J, it
becomes K ¢ J, and K becomes upper while J becomes lower.
Example)

-{D1357 » 10—J i -

The following are examples of registers in which index modification has
been executed.

(F----- (Wheni=0, expresses RW100
RW100 When | =1, expresses RW101
When!{=-1, expresses RW099
When | = 100, expresses RW200
(When | =-100, expresses RW000

J - _(When J=0, expresses D0201 - D0200
D0201-D0200 When J =1, expresses D0202 - DO201
When J =2, expresses D0203 - D0202
When J = -1, expresses D0200 - DO199
When J = -2, expresses D0199 - D198

190 PROSEC T3

PART 3 PROGRAMMING INFORMATION 3. User Data

The following shows an example of the operation when index
modification is applied to a program.

Example}
X0010
—|PF{ C000* 3 — D2001 - D2000 } } @
|
—{ D2000 MOV | H XW005 MOV D3000 ———— 2
.
—{ +11 JH{Xwo10 MOV D3000] ®
|
' +11 F{Xwo12 MOV D3000] @

The following processing is carried out when X0010 changes from OFF

to ON-

@ Substitute 3 times the value of the content of C000 in index register |

@ Store content of XWO005 in D(3000+1)

® Add 1 to the content of | and store content of XW010 in D(3000+!)

@ Add a further 1 to the content of | and store content of XW012 in
D(3000+I)

Incidentally,

®
-1 P I~ is positive transition-sensing contact which becomes ON once
only when device ® changes from OFF to ON (until the instruction is
executed in the next scan)

® * ®—Q+1+© }~is multiplication instruction which multiplies &
by ® and stores it in double-length register ©+1+©

- +1 @ }-is increment instruction which adds 1 to the content of @
and storesitin &

~-[@® MOV ® I is a data transfer instruction which substitutes the
content of @ in ®

—NOTE
VAV

(1) Substitutions of values to index registers and index modification
may be carried out any number of times during a program.
Therefore, normally, the program will be easier to see if a value
substitution to an index register is executed immediately before
index modification.

(2) Be careful that the registers do not exceed the address range
through index modification. When the resulits of index
modification exceed the address range, the instruction is not
executed, and special devices (50051 and S0064) which
indicate ‘boundary error’ become ON.

User’s manual - Functions 191

3. User Data PART 3 PROGRAMMING INFORMATION

As explained before, the main purpose of the index modification is
indirect designation of register. However, as the special usage of the
index modification, the followings are also possible.

* For CALL and JUMP instructions, indirect designation of the
destination address is possible.

!
—<{JUMP N.00OO } (If I=5, jump to Label 5)

if indexed destination is not registered, the special devices (S0051
and S006C) become ON. If indexed destination exceeds the range,
the special devices (S0051 and S0065) become ON. And both
cases, the instruction is not executed.

* For SET and RST instructions, indirect designation of device is
possible.

|
-{ SETR0O100}- (If I=HOO5F, set RO15F to ON)

* For constant operand, the constant value can be modified by the
index register.

I
-{ 500 MOV D5000 }- (If I=10, 510 is stored in D5000)

NOTE
VAV

Refer to the Instruction Set manual for the operands to which the
index modification is available in each instruction.

192 PROSEC T3

PART 3 PROGRAMMING INFORMATION 3. User Data

3.5
Digit designation There is a method called ‘digit designation” which is a special
designation method for register data. ‘Digit designation’ treats 1 digit (4
bits) of a hexadecimal number as a data unit. It is a method of
designation in which a number of digits from the designated devices (bit
positions) are made the subject of data operation.

In practice, in the case of the following Example, 2 digits from X0008
(that is to say, the upper 8 bits of XW000) become the subject of data
operation. Lo PR

Example)

_—— Digit designation (in this case 2-digit designation)
xgozoa -« Digit designation leading device

\“ designates the hatched line area
F---CB---87---43---20

XWooo (/777770227205

2nd digit 1st digit

X008

There are 9 types of digit designation - Q0, Q1, ..., Q8 which have the
following significations

QO0....makes the designated device 1 bit the subject of data operation

Q1....makes 1 digit (4 bits) started with the designated device the
subject of data operation

Q2....makes 2 digits (8 bits) started with the designated device the
subject of data operation

Q3....makes 3 digits (12 bits) started with the designated device the
subject of data operation

Q4makes 4 digits (16 bits) started with the designated device the
subject of data operation

Q5....makes 5 digits (20 bits) started with the designated device the
subject of data operation

Q6makes 6 digits (24 bits) started with the designated device the
subject of data operation

Q7makes 7 digits (28 bits) started with the designated device the
subject of data operation

Q8....makes 8 digits (32 bits) started with the designated device the
subject of data operation

In digit designation, when the area designated covers multiple
registers, as shown below, the area is designated from the smaller
address to the greater address.

User’s manual - Functions 1 93

3. User Data

PART 3 PROGRAMMING INFORMATION

Example)

AWo31 RWO030
0 FC 0

Sae = [VA7) AT T

4

The 16 bits RO30C to RO31B
(RO30C is the LSB as a numericai value)

Below, the operation of digit.designation.is.described for.the case.when
digit designation is executed as a source operand {a register for

- executing an instruction using its data) and the case when digit

designation is executed as a destination operand (a regisier which
stores the result of instruction execution).

It is possible to carry out digit designation for both a source operand
and a destination operand with 1 instruction.

(1) Digit designation for a source operand
For a single-length {16 bits) operand, Q0 to Q4 are available. The
" upper digits which are out of the designated digits are regarded as 0.

Example 1)

Q1
—{ X0054 MOV D1000 }— (Data transfer)

F CB 8 7 43 2 10
Transferred data I 0 | 0 | 0 | | l I]

Contents of X0057
Contents of X0056
Contents of X0055
Contents of X0054

Example 2)

Q4
—[X002C B + HOO50—YW010 J— (BCD addition)

{Example of XW003=HB8765, XW002=H4321)
X003B~X0038 X0037~X0034 X0033~X0030 X002F~X002C

Augend data] 7 l 6 | 5 | 4 l
.

Addenddata | o | o | 5 | o |
U 0

(Ssltjg:ed in YW010) [7 | 7 | 0 | 4 |

194 PrROSEC T3

PART 3 PROGRAMMING INFORMATION 3. User Data

For a double-iength (32 bits} operand, all Q0 to Q8 are available.

Example 3)

Q7
—{ R0102 DMOV D0701-D0700 |— (Double-length transfer)

D 0 F 210

RWortRWoto | [7707777770 ||

~
~
~

v [0 1777771170000

0070100700 | 0 77777777

(2) Digit designation for a destination operand
For single-length (16 bits) operand, QO to Q4 are available. The
result data of the operation is stored in the specified digits of the
destination register. The digits which are out of the designated
digits are unchanged.

Example 1)

Q2
— XW000 MOV R0018 }— (Data transfer)

F 8 7 4 3

e [w0007
Transterred data M / ///W

AWO001 V// /////W / //éf%] Unchanged i

A

2 digits started with R0018 \
(RO018~R0O01F) RO018

User's manual - Functions 1 95

3. User Data

PART 3 PROGRAMMING INFORMATION

Example 2)

Q3 Q3
—{ X0045 + 200—R1200 }— (Addition)

0

2

XWOO05 XW004 _%]%// /ADVC/ @7)}/ 7 4%54\

- "\

Augend data I 0 V// / / /// @ / //////%

Addend data | 200 |
w T
Destination | Unchanged V////%@+ 2007/

R1200

If, XW005=H0077=0000 0000 0111 0111 (binary)
XW004=H182A=0001 1000 0010 1010 (binary)

augend data is;
0000 1000 1100 0001 (binary)=HO08C1=2241 (decimal)

sum by adding 200;
0000 1001 1000 1001 (binary)=H0989=2441 (decimal)

Therefore, the data below is stored in the 3 digits (12 bits)
started with R1200.
1001 1000 1001 (binary)=H989=2441 (decimal)

196 PrOSEC T3

PART 3 PROGRAMMING INFORMATION 3. User Data

For a double-length (32 bits) operand, all Q0 to Q8 are available.

Example 3)

Q6
—{ D8001- D000 DMOV R0508 |— (Double-length transter)

F 8 7 0 F 0

D8001-D800C | Ignored [K 0 00

——

- -

AWOS1-RWOS0 V///M //,V/WW// Unohanged l

—NOTE
VA

(1) Be careful that the result of digit designation does not exceed
the address range. When the result of digit designation exceeds
the address range, the excess portion will be ignored.

(2) A combination of digit designation and index modification can

also be used.

Exampie)
al | If i=HOO1C, it signifies the same Lo
R0O000 ROO1C

User’s manual - Functions 197

4. 1/0 Allocation

PART 3 PROGRAMMING INFORMATION

4.1

- Overview The state of external input signals inputted to input modules is read via

the input registers/devices (XW/X or IW/l) when scan control is
executed. On the other hand, the output data determined in user
program execution are outputted to output modules via output
registers/devices (YW/Y or OW/O) and outputs from the output
modules to external loads are based on these data.

1/O allocation is the execution of mapping between input

. registers/devices and input modules and of mapping between output

registers/devices and output modules. in other words, physical devices
called I/O modules are allocated to logic devices called
registers/devices.

input registers/devices and output registers/devices do not use their
own independent memory areas. They use a series of memory areas
which can be said to be input/output registers/devices (a register
address range of 256 words from 000 to 255).

By executing I/O allocation, function type determination is carried out
by making addresses allocated to input modules input registers/devices
and addresses allocated to output modules output registers/devices.

Input/Output Registers
(YW) 000 /O Modules
(YW) 001 32-point i < input signals &)
-point input .
< Input signals (B
(YW) 002 put signals ®
(YW) 003 »! 16-point output 1 Qutput signais ©)
(YW) 004 »| 16-point output —» Output signals &)
~ ~. .
\/O allocation
execution
Input/Quiput Registers
XW000 ® <
XW001 <
YW002 ©
YWO003 ®
(YW) 004

Note) Addresses not allocated to /O modules are output (YW)
internally.

198 PROSEC T3

PART 3 PROGRAMMING INFORMATION

4. 1/0 Allocation

4.2
Methods of I/O allocation

Automatic /O allocation

The execution of I/O allocation can be said in other words to be the
carrying out of the registration of /O allocation information in system
information. The T3 CPU checks whether the I/O modules are correctly
mounted based on this I/O allocation information when RUN starts-up.
Also, at the same time, the correspondence between the input/output
registers (XW/YW) and the I/O modules is determined based on this I/O
allocation information. On the other hand, the programmer reads this
/O allocation information when communicating with the T3 and
recognizes the assignment.whethet.input (XW).or-output {YW) for every
input/output register address.

There are 2 methods for the registration of I/O allocation information in
system information. These are automatic I/O allocation and manual I/O
allocation.

The registration of I/O allocation information is only available when the

T3 is in the HALT mode but not in the ‘memory protect’ state (P-RUN).

This is a method of causing the T3 to execute the registration of 1/0
allocation information. It is carried out by selecting and executing the
AutoSet command on the I/0 allocation screen of the programmer (T-

PDS).

When the automatic 1/Q allocation is executed, the T3 CPU reads out
state of the /O modules which are mounted (what type of module is
mounted in which position) and registers the /O allocation information.

Each 1/0 module has one of the module types shown below.

Part No. Description Module Type
DI334/334H 32 pts DC input xX2w
DI335/335H 64 pts DC input X4aw
IN354/364 32 pts AC input X2w
DO333 16 pts DC output Y 1W
DO334 32 pts DC output Y 2w
DO335 64 pts DC output Y AW
AC363 16 pts AC output Y 1W
AC364 32 pts AC output Y 2W
RO364 32 pts relay output Y 2w

1" RO363S '|"16 pts isolated relay output Y 1W
AD368 8 ch analog input X 8w
DA364/374 4 ch analog output Y 4W
CD332 Change detect 8 pts DC input X 1w
Pi312 2 ch puise input iX+Y 2W
AS311 ASCIl module iX+Y 4W
SN321/322/323 TOSLINE-S20 TL-S
MS311 TOSLINE-F10 TL-F

User’s manual - Functions 1 99

4. 1/0 Allocation PART 3 PROGRAMMING INFORMATION

For instance, when automatic I/O allocation is executed with the /O
module mounting state shown below, the CPU reads the /O module
types which are mounted and creates /O allocation information and it
registers it in system information.

+ Module Mounting State

PUD 1 2 3 4 5 6 7 8 9=<—>SlotNo
Basic unit PllciTisisis|5|5l5|35]s
(unit0) s||p|L|E|E|2IE|212 515 2|
Hulilelelelz|a|lelele|d
ala|aa|lalala|all
S|y |oulow ||| ow]ou|cn
Lo I o I s T e T I < T I o O I
0 1 2 3 4 5 6 7 8 9 10
Expansion unit #1 | p IR =
Unit 1 5l 00| |L|L]=|=|0|=
(Unit1) s|||3|3|z|2|x|a|a|5|5|2|G
S S s5|5 5515|818 2l
8| o|le|lo|l<|<|>|>|5]|7
= | £ ©
0|3 o
0 1 2 3 4 5§ 6 7 8 9 10
Expansion unit #2 | p =is(slsigls|(sis|sis]ls
(Unit 2) s||8|55|5|558|215|218|5
Illo|l]o|O|]O|OC|OCjJO; 00| 0| Q
Flalala(a1212/817212) 22
alola|lg|laojalalalal e o
R IEIEIEIBIEIEIEIEIE
0 1 2 3 4 5 6 7 8 9 10
Expansion unit #3 | p siI5(5
(Unit 3) sl |E122ele|eielelelele
l|lo|]o|lo| W (@ @] @©|@| ©| | @
Felel e 3|8lc|8|8|3|88
alala(>|zl>|>|>|>|>>
ele|e
* /O allocation information
Unit 0 Unit 1 Unit 2 Unit 3
g Module type z Module type 3 Module type z Module type
PU 0 iX1W 0 Y 4W 0 Y 1w
0 TL-S 1 iX1W 1 Y 4w 1 Y 1w
1 X 2w 2 X 8w 2 Y 2W 2 Y 1W
2 Xa2w 3 X8sw 3 Y 2W 3
3 X 2w 4 X 8w 4 Y 2W 4
4 X 4w 5 Y 4W 5 Y 2W 5
5 X aw 6 Y 4W 6 Y 2W 6
6 X 2w 7 7 Y 2W 7
7 X 2w 8 8 Y 2W 8
8 X 2w 9 iX+Y 2W 9 Y 2w 9
9 10 10 Y 2w 10

200 PROSEC T3

PART 3 PROGRAMMING INFORMATION 4. /0O Allocation

Manual /O allocation This is the method by which the user edits the I/O aliocation information
on the /O allocation information screen of the programmer (T-PDS)
and writes it to the T3. The manual /O allocation is used in the
following cases.

* When carrying out programming in a state in which the /O modules
are not fully mounted

* When it is desired to remove some modules from the subjects of
batch input/output processing

* When using the unit base address.setting function

* When allocating a specified number of registers to slot left vacant for
future addition

* When carnying out offline programming

For manual I/O allocation, module types are set for each slot. The
module types which can be set at this time are as shown below.
Module types are expressed by combinations of function classifications
and numbers of registers occupied. (except for MMR, TL-S and TL-F)

clanl.ls?fci:é’:tri'on regigltg:gboecrczfpied Remarks
X 01, 02, 04, 08, 16, 32 Input (batch input/output)
Y 01, 02, 04, 08, 16, 32 * | Output (batch input/output)

X+Y 02, 04, 08, 18, 32, 64, 128 Input+output (batch input/output}
iX 01,02, 04, 08, 16, 32 Input {out of batch input/output)
iY 01,02, 04, 08, 16, 32 Output (out of batch input/output)

iX+Y 02,04, 08, 16, 32, 64, 128 Input+output (out of batch input/output)
4 08, 16, 32

SP 01, 02, 04, 08, 16, 32, 64, 128 | Space

MMR - Memory type

TL-8 - For TOSLINE-S20

TL-F - For TOSLINE-F10

(1) Allocations to input/output modules are: -X and iX to input modules,
Y and iY to output modules and X+Y and iX+Y to input/output mixed
modules. The input/output registers which correspond to modules
with the designation i attached are not included in batch input/output
subjects.

(2) SP is used when allocating an arbitrary number of registers to a
vacant slot.

(3) MMR is set in the CPU slot when an IC memory card is used as an
expansion memoty.

(4) TL-S is allocated to data transmission module TOSLINE-S20.

(5) TL-F is allocated to data transmission module TOSLINE-F10.

(6) Z is not used in the T3.

User’s manual - Functions 201

4. /0O Allocation PART 3 PROGRAMMING INFORMATION

15—

— _NOTE
VAV

The I/O allocation information can be freely edited and registered
by carrying out manual /O allocation. However, it is necessary that
the registered input/output allocation information and the VO
module mounting state should agree for starting-up RUN.

When executing the ‘forced RUN’ command, operation (RUN-F
mode) is possible even if the modules registered in the allocation
information are not mounted.. However, in this case also, operation
cannot be executed when a module of a different type to the
registered module is mounted (I/O mismatch).

Unit base address In manual I/O allocation, the starting register address (input/output
setting function registers) of each unit can be set.

The register addresses can be arranged for each unit by using this
function. Also, when an I/0O module is added in a vacant slot in the

future, it is possible to avoid affecting the register addresses of other
units. '

(Unit base address setting screen on T-PDS)

Unit #0 Unit #1 Unit #2 Unit #3
Top Register No. Top Register No. Top Register No. Top Register No.
[0] [15] [35] | 50]

In the case of this screen example, address allocations can be carried out
from XW/YWO00Q for the basic unit
from XW/YWOQ15 for expansion unit #1
from XW/YWO035 for expansion unit #2
from XW/YWO50 for expansion unit #3

NOTE
VA

Settings by which latter stage units become lower register
addresses cannot be made. '

202 PROSEC T3

PART 3 PROGRAMMING INFORMATION 4. 1/0 Allocation

4.3
Register and module
correspondence

When I/O allocation information is registered by carrying out automatic
I/O allocation or manual I/O allocation, correspondence between

registers and modules is automatically determined by the following
rules.

(1) In any unit, allocation is the lower address registers are allocated in
sequence from the module at the left end.

(2) In a case when the unit.base address is not set.(it is.not set by
automatic I/O allocation), the registers are aliocated in continuation
from the previous stage unit.

(3) A slot for which a module type is not set (any vacant slot in
automatic 1/O allocation is the same) does not occupy any registers.

{4) The cases of the half size racks (BU315, BU356) also are handled
in the same way as standard size rack for I/O allocation, and they
are regarded as having slots without settings in the latter portions of
the unit. Therefore these portions do not occupy registers.

(5) Slots for which SP (space) is set, output registers are allocated
internally by a number of set words.

(6) Modules for which Z, MMR, T1.-S and TL-F are set do not occupy
input/output registers (XW/YW).

(7) Input/output registers which are not allocated to I/O modules
become output registers (YW) in the programming. Thus, they can
be used in the same way as auxiliary registers/relays (RW/R).

User's manual - Functions 203

4. 1/0 Allocation

PART 3 PROGRAMMING INFORMATION

The following examples show the register ailocation when the 1/O
allocation information is registered.

Example1)

¢ |/O allocation information

Unit 0 Unit 1 Unit 2 Unit 3
Base address [] Base address[] | Base address[] | Base address|]
3 Module type 3 “Moduletype - 3 ‘Module type - 3 “Module type
PU 0 iX 1w 0 Y 4W 0 Y 1W
0 Xaw 1 X 1W 1 Y 4W 1 Y 1W
1 X 2w 2 X 8w 2 Y 2W 2 Y 1AW
2 X2w 3 X 8w 3 Y 2W 3
3 X 2w 4 X 8w 4 Y 2W 4
4 X aw 5 Y 4W 5 Y 2W 5
5 X4w 6 Y 4W 8 Y 2w 8
6 X 2w 7 7 Y 2W 7
7 X 2w 8 8 Y 2w 8
8 X 2w 9 iX+Y 2W 9 Y 2W 9
9 10 10 Y 2W 10
* Register allocation
Unit 0 Unit 1 Unit 2 Unit 3
2 Register 3 Register E Register 3 Register
PU 0 | Xwoz22 0 | YWO58~YW061 | 0 | YW084
0 | XW000, XW001 | 1 | XW023 1 | YW062~YWO0BS | 1 | YWO085
1 | XW002, XWO003 | 2 | XW024~XW031 | 2 | YW066, YWO67 | 2 | YW086
2 | XW004, XWO005 | 3 | XW032~XW039 | 3 | YW068, YW0B9 | 3
3 | XW005, XW007 | 4 | XW040~XW047 | 4 | YWO70, YWO071 | 4
4 | XWQ08~XW011 | 5 | YW048~YWO051 | 5 | YW072, YWO73 | 5
5 | XW012~XW015 | 6 | YW052~YWO055 | 6 | YW074, YWO75 | 6
6 | XW016, XWO017 | 7 7 | YWO76, YWO077 | 7
7 {-XW018,- XW019 | 8 8 : YWO078, YW079 | 8
8 | Xw020, XW021 | 9 | XW056, YWO057 | 9 | YWO080, YWO8B1 | O
9 10 101 YW082, YWO083 |10

204 PROSECT3

PART 3 PROGRAMMING INFORMATION

4. 1/0 Allocation

Example 2)
» /O allocation information
Unit 0 Unit 1 Unit 2 Unit 3
Base address [| | Base address[] |Base address [100] | Base address [150]
3 Module type 3 Module type ? Module type 3 Medute type
PU 0 X 8w 0 X 4w |0 Y 2w
0 iX 2w 1 X BW 1 X 4w 1 Y 2w
1 T iX 2w 2 X8W |2 F -YA4W 2 Y 2w
2 iX2W 3 SP 8W 3 Y 4W 3 Y 2w
3 SP 4w 4 Y AW 4 SP 8W 4 Y 1W
4 5 Y 4w 5 X2w 5 Y 1w
5 iY 2w 6 Y 4W 6 Xa2w 6 Y 1W
6 i 2W 7 Y 4w 7 X 2w 7 Y 1w
7 iY 2w 8 Y 4W 8 Xa2w 8
8 SP 4W 9 9 X 2w 9
9 10 10 10
* Register allocation
Unit 0 Unit 1 Unit 2 Unit 3
3 Register 2 Register 3 Register ? Register
PU 0 [AW020~XW027 | 0 | XW100~XW103 | 0 | YW150, YW151
0 | XW000, XWO001 | 1 | XW028~XW035 | 1 | XW104~XW107 | 1 | YW152, YWI153
1 | XW002, XW003 | 2 | XWO036~XW043 | 2 | YW108~YW111 2 { YW154, YW155
2 | XWoD4, XW005 | 3 | YW044~YWO051 | 3 | YWT12~YW115 | 3 | YW156, YWI157
3 | YW006~YWO009 | 4 | YWO52~YWO055 | 4 | YW116~YW123 | 4 | YWI58
4 5 1 YWO56~YW059 | 5 | XW124, XW125 | 5 | YW159
5 | YWO10, YWO11 | 6 | YWO060~YW063 | 6 | XW126, XW127 | 6 | YW160
6 | YWO012, YWO13 | 7 | YWO064~YWO67 | 7 | XW128, XW129 | 7 | YW161
7 | YW014, YWO15 | B | YWOBB~YWO071 | 8 | XW130, XW131 | 8
8 | YW0O16~YWO019 | © 9 | XW132, XW133 | 9
9 10 10 10

User’s manual - Functions 205

4. /O Allocation

4.4
Network assignment

TOSLINE-S20

PART 3 PROGRAMMING INFORMATION

For the data transmission module {TOSLINE-S20, TOSLINE-F10), the
network assignment is necessary in addition to the I/O allocation
mentioned before.

The network assignment is the declaration of assignment between the
link registers and the scan data memory in the data transmission
module.

The TOSLINE-S20 has 1024 words of scan data memory in the
module. ‘ o e -
By using the network assignment, T3's link registers (W) are assigned
to the scan data memory in units of blocks.

(64 words/block)

Here, the block is not related to the data send block in the TOSLINE-
520. The data transfer direction between the link registers and the
scan data memory is determined by T3 CPU for each address,
according to the data send block setting in the TOSLINE-S20.

The following 3 types of assignment setting are available.

Setting Function
Biank The block of link registers (W) are not assigned to
TOSLINE-S20.
LINK The block of link registers (W) are assigned to
TOSLINE-S20.

(T3 accesses TOSLINE-S20 for the block)

GLOBAL Used when 2 TOSLINE-S20s are mounted on the
T3, and when the T3 functions as bridge station for
the 2 TOSLINE-520 networks.

Note) Up to 2 TOSLINE-S20s can be mounted on a T3.
In this case, the TOSLINE-S20 nearer to the T3 CPU is
regarded as CH1, and the other is CH2.

206 PROSEC T3

PART 3 PROGRAMMING INFORMATION 4. 1/0 Allocation

(1) Example when 1 TOSLINE-S20 is mounted (CH1 only)

* Network assignment example

Block Corresponding link registers CH1 CH2
1 W0000~-W0063 LINK
2 W0064~W0127 LINK
3 W0128~W0191 LINK
4 W0192~W0255
5 W0256~-W0319
6 W0320~W0383
7 WO0384~W0447
8 W0448~WO0511
9 W0512~W0575 LINK
10 W0576~W0639 LINK
11 W0640~-W0703
12 W0704~W0767
13 W0768~WO0831
14 W0832~W0895
15 W0896~W0959
16 W0960~W1023

* Data transfer direction

Link register Data transfer direction CH1 scan data

WO0000) o |_

{ > ! §
woi4¢ | 149
W0150 150

{ < {
w19t | 191
W0192 192

! {no transfer) l o
westn | 511 | =
W0512 512 | &

{ < {
wogae | 639
WO0640 640

{ (no transfer) !
wig2g | 1023

User’'s manual - Functions 207

4. 1/0 Allocation PART 3 PROGRAMMING INFORMATION
e

(2) Example when 2 TOSLINE-S20s are mounted (CH1, CH2)

+ Network assignment example

Block Corresponding link registers CH1 CH2
1 WO0000~-W0063 LINK
2 WO0064~W0127
3 W0128~W0191 LINK
4 W0192~W0255 LINK
5 W0256~W0319
6 W0320~W0383
7 WO0384~W0447
8 W0448~W0511
9 WO0512~W0575 LINK
10 WO0576~W0639 LINK
11 W0640~W0703 LINK
12 W0704~W0767 LINK
13 W0768~W0831
14 W0832~W0895
15 W0896~W0959 GLOBAL
16 W0960~W1023 GLOBAL

* Data transfer direction

CH1 scan data Link register CH2 scan data
o | woooo | 0
{ —> {
63 | WO0063
° 64 w0064
-% ! |{no transfer) !
el 127 | Wo127 (no transfer) 4
128 wo128 K
{ —> 2 &
149 | W0149
= 150 WO0150
§ ¢ B {
25 | we2ss |
256 W0256 256

208 PROSEC T3

PART 3 PROGRAMMING INFORMATION 4. 1/0 Allocation
m

CH1 scan data Link register CH2 scan data
%56 | wo2s6 | 256
! (no transfer) !
Q
wosit | 511 | =
W0512 512 | @
{ I ¢
woseg | 599
~wosoo | T soo -
o (no transfer) ! — ! (}53
2 woess | 699
3 WO0700 700
o
{ D a— {
woze7 | 767
WO0768 768
l (no transfer) l °
895 W0895 895 |2
______________________ o
896 w0896 896 | @
¢ —> l (no transfer) {
8 | wosgs | 899
900 W0900 900
{ - l -« {
2| %49 | woe4s | 949
B| 950 W0950 950
{ -« { —> {
89 + woess | 959 |
o| 960 W0960 960 | &
g | —> [| —— [
o) 1023 | wio2s | 1023
— NOTE
VAV
(1) In the GLOBAL setting block, the scan data is read from the
receive setting CH, and transferred to the link registers and the
send setting CH.
(2) In the GLOBAL setting block, if both CHs are set as send, the
link registers data is transferred to both CHs.
(3) In the GLOBAL setting block, if both CHs are set as receive, the
GLOBAL setting CH’s data is transferred to the link registers.
(4) For one block, settings for CH1 and CH2 should not be duplicated.
If duplicated, CH2 setting is ignored.

User's manual - Functions 209

4. 1/0 Allocation PART 3 PROGRAMMING INFORMATION

TOSLINE-F10 The TOSLINE-F10 has 32 words of scan data memory in the module.
Up to 8 TOSLINE-F10 can be mounted on a T3. In this case, the
TOSLINE-F10 nearer to the T3 CPU is assigned in sequence from CH1
to CH8.

For the TOSLINE-F10, set LINK for all existing CHs by the network
assignment. By this sefting, the link registers (LW) are assigned to the
TOSLINE-F10 in units of 32 words from the lowest address.

¢ Network assignment when 4 TOSLINE-F10s are mounted

CH | Setting | Assigned link register (LW)

1 LINK LWO00~1 W031

2 LINK LW032~LW063

3 LINK LW064~LW095

4 LINK LWO096~LW127

5

6

= -

8

The data transfer direction between the link registers (LW) and the scan
data in the TOSLINE-F10 is determined by T3 CPU, according the
TOSLINE-F10 network configuration.

NOTE
VA

For details of the data transmission modules (TOSLINE-S20,
TOSLINE-F10), see separate manuals for them.

210 PRoOSEC T3

PART 3 PROGRAMMING INFORMATION 5. Programming Language

5.1
Overview The T3 supports 2 types of programming language for the user
programs-ladder diagram and SFC. Multiple programming languages
can be used in mixed by a single user program by separating blocks of
the program. Thus, the optimum program configuration for the control
functions can be-achieved.

(1) Ladder Diagram
This is the language which is core programming language for the
T3. The program is configured.by.a combination.of relay symbols
and function blocks. This language is suitable for logic control.

Relay SymbolsThese are NO contact, NC contact, coil, etc.

Function Blocks.....These are box type instructions which express
single functions. They can be freely positioned
in a ladder diagram network by treating them in
a similar way to relay contacts. The output of
one function block can be connected to the input
of another function block.

Example)

X05 X10 X13 X14 Y5A

b (>

Y5A X20 R3C

- H RW12 MOV D102 |—

R100
— H Xw10 > D101

User’s manual - Functions 21 1

5. Programming Language PART 3 PROGRAMMING INFORMATION

(2) SFC (Sequential Function Chart)
This is a programming language suitable for process stepping
control (sequential control). Also, it is a language which makes the
flow of control easy to see. Therefore, it is effective for program
maintenance and standardization. SFC program is composed of
structure part which shows the flow of control, action parts which
show the operation of each step and transition condition parts which
enable the process to advance. Action parts and transition
condition parts are produced by ladder diagram. SFC can be
considered as an execution control element for. making-a.program
easier to see by arranging the control processes and conditions
rather than a single programming language.

(SFC Structure)
Initial step
0 @? Transition

T

/ Divergence of simultaneous sequences

2 6 E] Divergence of sequence selecton
(Transition condition) [] / iverg eq

l_—_—: T | {Action part)
I.__ 3 T = ion pa
- 7] o[e H ——

. ['j £ il TON H SET
M —
T e[| L(H

0 I Il |[«<——— Endstep

The flow of control advances downward from the initial step and,
when it reaches the end step, it returns to the initial step. A step
corresponds to an operational process, and there is an action part
corresponding to each step. The condition of shifting from one step
to the next is called ‘transition’, and there is a transition condition
corresponding to each transition. When the immediately preceding
step of a transition is in the active state and the transition condition
is ON, the state of the immediately preceding step is changed to
inactive and the next step becomes active.

212 PROSEC T3

PART 3 PROGRAMMING INFORMATION 5. Programming Language

The following Table shows the programming languages which are
usable for each program type/pan.

Program type/part Ladder diagram SFC

Main program O O
Sub-program O O
Interupt program O X
Sub-routine O X*
SFC action program part O X
SFC transition condition part O X

O: Usable

X: Not usabie

*} SFC can be made an hierarchical structure (other SFC can be made
to correspond to 1 step of SFC). In this case a macro-step
(equivalent to an SFC sub-routine) is used.

User's manual - Functions 21 3

5. Programming Language PART 3 PROGRAMMING INFORMATION

5.2
Ladder diagram Mixed use can be made of the two types of programming language,
ladder diagram and SFC in the T3. However, of these, ladder diagram
is the basic language which must be present in the user program.

Here, the structure, execution sequence and general items of ladder
diagram instructions are explained for ladder diagram programs.

As expiained before, a user program is registered by every functional

- type which is called a.program.type...Furthermore, in.each program
type the user program is registered by one or a multiple of units called
‘blocks’.

Main program, sub-program #1 - #4,
Program Types........ timer interrupt program,
I/O interrupt programs #1 - #8, sub-routine

BlOCKS ..oveveerireneene Blocks 1-256 (1 language/1 block).

When commencing programming in a block to be newly registered, that
program is designated by the language which is used (this is called
‘language designation’).

However, in the case of ladder diagram, the operation of language
designation is not required (the default is ladder diagram).

The ladder diagram program in any one block is registered/arranged by
units called ‘rung’. A rung is defined as 1 network which is connected
to each other, as shown below.

Rung number Rung
1 e b b= O
+ a
b —— |
2 | (
{
3 {

214 PROSECT3

PART 3 PROGRAMMING INFORMATION 5. Programming Language

The rung numbers are a series of numbers (decimal numbers) starting
from 1, and rung numbers cannot be skipped. There is no limit to the
number of rungs.

The size of any one rung is limited to 11 lines x 12 columns, as shown
below.

1 2 3 4 5 6 7 8 g 10 11 12
b b R
P SN T S S RN O SRS S O S S MO W
L N s I R s
e o S
o L e s e
o (AR
A
8 e
o AR
e
PP S S S S O S

Ladder diagram is a language which composes programs using relay
symbols as a base in an image similar to a hard-wired relay sequence.
In the T3, in order to achieve an efficient data-processing program,
ladder diagram which are combinations of relay symbols and function
blocks are used.

Relay Symboils........ These are NO contact, NC contact, coil and
contacts and coils to which special functions are
given. Each of these is called an ‘instruction’.
(Basic ladder instructions)

Example) NO contact

®
Input — — Output

When device ® is ON, the input side and the output side
become conductive.

Viewed from the aspect of program execution, the operation
is such that when the input is ON and the content of device
@& is also ON, the output will become ON.

User's manual - Functions 21 5

5. Programming Language PART 3 PROGRAMMING INFORMATION
L |

Function Blocks.......These are expressed as boxes which each show 1
function. As types of function, there are data
transfers, the four arithmetic operations, logic
operations, comparisons, and various
mathematical functions. Each of these is called an
‘instruction’. {Function instructions)

In a function block there are 1 or more inputs and 1
output. When a certain condition is satisfied by the
input state; a specified funetion is-executed and the
ON/OFF of the output is determined by the result
of execution.

Exampie 1) Addition
Input {®+B®—OF Output
When the input is ON the content of register ® and the content of
register ® are added and the result is stored in register ©. The
output becomes ON if an overflow or an underflow is generated

as the result of the addition.

Example 2) Combination of Relay Symbols and Function Blocks

X0030 Y0105
— | SPae
—{ XW004 > 500 }—

Y0105 X0027

—

When X0030 is ON or the content of XW004 exceeds 500, Y0105
becomes ON. Y0105 stays on even if X0030 is OFF and the
content of XW004 is 500 or less, then Y0105 will become OFF
when X0027 becomes ON.

—NOTE
VAV

(1) A function block can be regarded as a contact which has a
special function. By carefully arranging the function biocks in
the order of execution of instructions, compiex control functions
can be achieved by an easily understandable program.

(2) A list of ladder diagram instructions is shown in Section 5.5. For
the detailed specifications of each instruction, see the separate
volume, ‘Instruction set Manual’.

216 PROSEC T3

PART 3 PROGRAMMING INFORMATION 5. Programming Language

P

Instruction execution The instructions execution sequence in a block composed by ladder
sequence diagram are shown below.

(1) They are executed in the sequence rung1, rung2, rung3... through
to the final rung in the block (in the case of a block with an END
instruction, through to the rung with the END instruction).

(2) They are executed according to the following rules in any one rung.

® When there is no vertical |1, 2, 3 4, -
. t [[~
connection, they are
executed from left to right.
@ When there is an OR _1_| 2, 4 | 6} | 7(3
connection, the OR logic 3 T
portion is executed first. 5
=l
, 1 3 4
@ When there is a branch, - | ¢
. [N
they are executed in the 2 T 6 7
order from the upper lineto [l (-
the lower line.
1 3 4
@ A combinationof @and @ - | ¢
above 2)_| 6 8
—_lj | {
P

The instructions execution sequence in which function instructions are
included also follows the above rules. However, for program execution
control instructions, this will depend on the specification of each

instruction.

The following show the execution sequences in cases in which program
execution control instructions are used.

3

4

| |
Il

n+1

6

T

R N N

n+m

-
N

MCSH

IMCRH

b

Master Control (MCS/MCR, MCSn/MCRn)

When the MCS input is ON,
execution is normal.

When the MCS input is OFF,
execution is by making the
power rail from the rung
following MCS to the rung of
MCR OFF (the execution
sequence is the same).

User’s manual - Functions 21 7

5. Programming Language PART 3 PROGRAMMING INFORMATION

* Jump Control (JCS/JCR)

, | S- JcsH When the JCS input is ON, the
T i I L instructions from the rung

following JCS to the rung of JCR
7 are read and skipped at high
{ {) speed (instructions are only read
: and not executed). When the
JCS input is OFF, execution is

n+m . [JCR}- normail.

n+i1

* Conditional Jump (JUMP/LBL)

1 2 When the JUMP instruction input
N — F—{JUMP N.03 | s ON. execution shifts o the
n+ 1 _l I ¢ rung foliowing the LBL instruction

with the corresponding label
number (03 in the example on

is OFF, execution is normal.

3 : the left}{the numbers in the
n+m _[LBL (03)] diagram on the left are the
4 5 6 execution sequence at this time).
n+m+1 _| }]| I ¢ When the JUMP instruction input
]
L]
|

* Repeat (FOR/NEXT) When the FOR instruction input

is ON, the instructions between

1 2
H 1 FOR and NEXT are repeated!
- FOR 10 P Y
- executed the designated number

10 times — — J————— of times (10 times in the example

on the left), and when the

_[H 7 designated number of times is
. reached, execution is shifted to
o the rung foliowing the NEXT
_[NEXT | instruction.

When the FOR instruction input
is OFF, execution is normal.

+ Sub-Routine (CALL/SUBR/RET) When the CALL instruction input

is ON, execution is shifted tc the
1 2 rung following the SUBR

— 1 CALL N.20 ————— instruction with the

7, 8, 9 corresponding sub-routine

—‘l f 11 () number (20 in the example in the

left). When the RET instruction

is reached, execution is retumed

SUBR (20) | to the instruction following the

CALL instruction (the numbers in

3

_i:

j{]—5{ } the diagram on the left are the
6

_.[

(Sub-routine)

execution sequence at this time).
RET] When the CALL instruction input
is OFF, execution is normal.

218 PROSEC T3

PART 3 PROGRAMMING INFORMATION 5. Programming Language

PR e

General information on The general information required for designing programs with ladder
ladder diagram diagram are listed below.

instructions

(1) In all program types, it is necessary to create at least one biock by

ladder diagram. In other words, the ends of the main program and
each sub-program are judged by ladder diagram END instruction.
Also, the end of each interrupt program is judged by a ladder
diagram IRET instruction. Furthermore, it is necessary to compose
the entry to and exit from a sub-routine by the ladder diagram
SUBR instruction and. RET. instruction.

(2) The group of instructions which includes the timer instructions (4

types), counter instruction, jump control instruction, master control
instruction and END instruction in the relay symbol type instructions
is called the ‘basic ladder instructions’.

{3) Instructions other than the basic ladder instructions are called

‘unction instructions’. The function instructions have respective
individual function numbers (FUN No.). Also,even if instructions
have the same function number, selection of the execution
conditions is possible as shown below. (There are some

instructions which cannot be selected)

Normal......Executed every scan while the instruction input is ON.
Edged....... Executed only in the scan in which the instruction input
changes from OFF to ON.

Example) Data Transfer Instruction

R0000
Nomal 10 MoV D1ooo]———‘

The MOV instruction (substitute 10 in D1000) is executed every scan
while RO000 is ON.

~—= Edged symbol
~

RO00D
Edged H —{ 10 MOV D1000 }———‘

The MOV instruction (substitute 10 in D1000) is executed only in the
scan in which R0000 changes from OFF to ON.

Any instructions cannot be positioned after (to the right of) a edged
function instruction.

Example)
RO00O _ A
— +—{ 10 MOV D1000 }-{ 20 MOV D1000
X0011 ~ R0001
—— —{ D2000 + 300 — D2000] (

Neither of these two rungs can be created.

User’s manual - Functions 21 9

5. Programming Language

PART 3 PROGRAMMING INFORMATION

(4) The number of steps required for one instruction differs depending
on the type of instruction. Also, even with the same instruction, the
number of steps occupied varies depending on whether digit
designation is used in the operand, a constant or a register is used
in a double-length operand, etc. (1-10 steps/1 instruction).

Also, basically step numbers are not required for vertical connection
lines and horizontal connection lines. '

(5) In a instruction which has multiple inputs, a vertical connection line
cannot be placed immediately.before an input. .In this case, insert a
dummy contact (such as the NO contact of special relay S004F

which is always ON) immediately before the input.

Example)

R0000 R0003
| | PN
11 NS

RO001 | _ i R0004
1 ONT O

RO002 | 19 cos0
] L .

U Modification

R0000 R0O003
|)

RO001 | SO04F R0O004
] | | 1 £ N
. ! CNT Y

RO002 10 C030
[L

Not possible

Possible

The above arrangement is not required for the lowest input of multiple

inputs.
Example)
R0O000 R0003
11 ()
R0O001 | SO04F R0004
R0002 10 Cosol
11 L
R0O005
| l

Possible

220 PrROSEC T3

PART 3 PROGRAMMING INFORMATION 5. Programming Language

(e

53
SFC SFC is the abbreviation of Sequential Function Chart. This is a
programming language suitable for process stepping control (sequential
control). In the T3, the following function can be used in the SFC.

* JUMP oo Moves the active state to an arbitrary step
when a jump condition is satisfied.

+ Step with waiting time Even if the transition condition is satisfied,
step transition is not carried out until a set

. ..time has elapsed. (Wait step)

+ Step with alarm When transition to the following step is not
carried out even if the set time has
elapsed, the designated alarm device
becomes ON. (Alarm step)

SFC can be used in the main program and in the sub-programs. Here
the overall composition of SFC, the elements of SFC and notes on
program creation are described.

An SFC program is composed of SFC structure,action program parts
and transition condition parts.

(SFC structure)
| Step {Action program part)

(Transition condition part) 120 b----mmm--- | { (M
Q) Transition L —
]__ &
l_‘ Step
“
121 preemeee- -—E D—{ F—)4

Step number

An SFC structure regulates the flow of the control operation and has
steps and transitions as its basic elements. A step is expressed by one
box, as shown above. Each step has its own step number. Also,
corresponding action program parts are annexed 1 to 1 to steps.

Steps have the two states of active and inactive. When a step is active,
the power rail of the corresponding action program will be ON. When a
step is inactive, the power rail of the corresponding action program will
be OFF. '

On the other hand, a transition is located between step and step, and
expresses the conditions for transition of the active state from the step
immediately before (upper step) to the following step (lower step).
Corresponding transition conditions are annexed 1 to 1 to transitions.

User’s manual - Functions 221

5. Programming Language PART 3 PROGRAMMING INFORMATION

For instance, in the diagram above, when step 120 is active, the action
program power rail corresponding o step 120 becomes ON. In this
state, when device & becomes ON, the transition conditions are
satisfied, and step 120 becomes inactive and step 121 becomes active.
in accompaniment to this, the action program power rail corresponding
to step 120 becomes OFF (executed as power rail OFF), and the action
program power rail corresponding to step 121 becomes ON.

Overall configuration The following illustrates the overall configuration of an SFC Program.

{SFC main program) (Macro program)

NOOY SFC initialization Macro entry
X0010 Macro number \A

100 .~ Initial step ~a 100
Label 0 EE]] R
\ ~+ Macrostep =777 20
@10 Pt
1[M]_
Macro number ~——= 100 _|_ = ~~~__ 21 []
St 3 -+
ep e
Step number ——» 2 [] 2 Tl 22
4 . ‘-"‘--.h___
Transition -7 Simultaneous o
3 [] sequences
Macro end

Sequence selection
%

s | 8[Jwo[]

7L oL |

SFC end
@10 «

The overall SFC program can be considered as divided into an SFC
main program and a macro program.

The SFC main program has an initial step in its structure, and has an
SFC end or an End step in its bottom. In the T3, a maximum of 64 SFC
main programs can be created.

222 PROSECT3

PART 3 PROGRAMMING INFORMATION 5. Programming Language

On the other hand a macro program is a sub-sequence which starts
from ‘macro entry’ and finishes at ‘macro end’. Each macro program
has its own macro number, and corresponds 1 to 1 to macro steps
which are present in the SFC main program or other macro programs.
Macro programs are used for rendering the program easy to see by
making the SFC program an hierarchical structure. In all, 128 macro
programs can bhe created.

10&] 3 <

Macro step B

10
® 30 Exactily the same G)
}I:NI] B . operation N 30 [:I
31

Macro entry

[

12 [:r_l o [_]
@\ 12©_r

Macro end

]

—_NOTE
VAV

(1) Macro steps can be used in macro programs (SFC multi-level
hierarchy). There is no limit to the number of levels.

(2) Macro programs and macro steps must correspond 1 to 1.That
is to say, macro steps designated with the same macro number
cannot be used in multiple locations.

(3) Macro program should be programmed in the following location
than the SFC main program/macro program which has the
corresponding macro step. (in upper numbered block)

SFC programming becomes possible by designating blocks and then
selecting SFC by language designation.

Only one SFC main program or one macro program can be created in 1
block. {1 SFC/block)

Also, the maximum number of SFC steps per block is 128.

User’s manual - Functions 223

5. Programming Language PART 3 PROGRAMMING INFORMATION

SFC elements The following is a description of the elements which compose an SFC
program.

(1) SFC Initialization
This is the function which starts-up (makes active) the designated
initial step by making the steps in a designated area inactive. Either
of the two methods of an SFC instruction or a ladder diagram
instruction is used. One SFC initialization is required for 1 SFC
main program.

(D SFC Instruction

Nxx
® SFC initialization
nnnn This instruction connects
to the initial step
S588
Initial step

Operands: xx = Program number (0-63)
@ =Start-up device (except T.and C.)
nnnn = Number of initialized steps (1-4096)

Function: When the device (with the exception of a timer device
or a counter device) designated by ® changes from
OFF to ON, the number of steps following the initial
step (ssss) which are designated by nnnn (from step
number ssss to ssss + nnnn -1), are made inactive, and
the initial step (ssss) is made active.

@ Ladder Diagram Instruction (FUN 241)
Input -{ SFIZ (nnnn) ssss - Output

Operands: nnnn=Number of initialized steps (1-4096)
$585 = Step number of initial step (0-4095)

Function: When the input changes from OFF to ON, the number
of steps designated by nnnn from the step number
designated by ssss (from step number ssss to ssss +
nnnn -1) are made inactive, and the initial step
designated by ssss is made active.

224 PROSEC T3

PART 3 PROGRAMMING INFORMATION 5. Programming Language

(2) Initial Step
This is the step which indicates the start of an SFC main program. It
has its own step number and can have an action program part
which corresponds 1 to 1.

Only 1 initial step can be programmed in 1 block.

§SSS @ ssss = Step number (0-4095)

(3) Step
This expresses one unit of contral steps. The step has its own step
numbers and has an action program part which corresponds 1 to 1.

5858 ssss = Step number (0-4095)

(4) Transition
This expresses the conditions for shifting the active state from a
step to the following step. Transition has a transition condition part
which corresponds 1 1o 1.

(5) SFC End

This expresses the end of an SFC main program. An SFC main
program requires either this ‘SFC end’ or the ‘end step’ of (6). The
‘SFC end'’ has a transition condition which corresponds 1to 1 and a
return destination label number. When transition condition is
satisfied with the step immediately before being in the active state,
the step following the designation label is made active with making
the step immediately before inactive. (This is the same operation as
that described in ‘SFC jump’ below).

@Il AJ- Il = Label number (0-1023)

User's manual - Functions 225

5. Programming Language PART 3 PROGRAMMING INFORMATION

(6) End Step
This expresses the end of an SFC main program. An SFC main
program requires either this ‘end step’ or the ‘SFC end’ of (5). The
end step has the same step number as the initial step. When the
immediately preceding transition condition is satisfied, the initial
step returns to the active state.

$888 |i| ssss = Initial step number (0-4095)

(7) Sequence Selection (divergence)
This transfers the active state to 1 step in which the transition
condition is satisfied out of multiple connected steps. When the
transition conditions are satisfied simultaneously, the step on the left
has priority. (The number of branches is a maximum of 5 columns).

(8) Sequence Selection (convergence)
This collects into 1 step the paths diverged by above (7).

226 PROSEC T3

PART 3 PROGRAMMING INFORMATION 5. Programming Language

(9) Simuitaneous Sequences (divergence)
After the immediately preceding transition condition is satisfied,
this makes all the connected steps active. (The number of
branches is a maximum of 5 columns).

(10) Simultaneous Sequences (convergence)
When all the immediately preceding steps are active and the
transition condition is satisfied, this shifts the active state to the
next step.

{11) Macro Step
A macro step corresponds to one macro program. When the
immediately preceding transition condition is satisfied, this shifts
the active state to macro program with the designated macro
number. When the transition advances through the macro
program and reaches the macro end, the active state is shifted to
the step following the macro step. A macro step is accompanied
by a dummy transition which has no transition condition (atways
true).

$588 ssss = Step number (0-4095)
mmm mmmm = Macro number (0-127)

User's manual - Functions 227

5. Programming Language PART 3 PROGRAMMING INFORMATION

(12) Macro Entry
This expresses the start of a macro program. The macro entry has
no action program. Steps are connected below the macro entry.
Only 1 macro eniry can be programmed in 1 block.

mmm mmm = Macro number (0-127)

(13) Macro End
This expresses the end of a macro program. Macro end has a
transition condition which corresponds 1 to 1, and returns to the
corresponding macro step when this transition condition is
satisfied.

{(14) SFC Jump
This expresses a jump o any arbitrary step. Jump has a jump
condition which corresponds 1 to 1, and jump destination label
numbers. When the transition condition is satisfied, the active
state jumps to the step following the designated fabel. When the

jump transition condition and the transition condition for the
following step are simultaneously satisfed, jump has priority.

=

@Il <—— [lll = Label number (0-1023)

T

*SFC Jump’ is located immediately after a step. SFC Jumps with
the same label number may be present in multiple locations.

228 PROSEC T3

PART 3 PROGRAMMING INFORMATION 5. Programming Language

(15) SFC Label
This expresses the return destination from an ‘SFC end’ and the
jump destination from a ‘SFC jump’. Label is located immediately
after transitions.

@il >— lili = Label number (0-1023)

T

— NOTE
VAV

Note that, when SFC label corresponding to SFC end or SFC jump is
not present, or when SFC labels with the same label number are
present in multiple locations, an error will occur when RUN starts-up.

(16) Wait Step -
This is a step which measures the time after becoming active, and
does no execute transition even if the following transition condition
is satisfied, until a set time has elapsed. [t has an action program
corresponding 1 to 1.

s8ss = Step number (0-4095)
Ssss ®= Timer register (TO00-T511)
® xooo = Set time (0-65535)
XXXXX
(Note) TO00-TO63 are 0.01 second timers
T064-T511 are 0.1 second timers

(17) Alarm Step
This is a step which measures the time after becoming active, and
when the transition condition is not satisfied within a set time,
switches ON a designated alarm device. !t has an action program
corresponding 1 to 1. When the transition condition is satisfied
and the alarm step becomes inactive, the alarm device also
becomes OFF.

$8ss = Step number (0-4095)
888 ®= Timer register (TO00-T511)
@ 00X = Set time (0-65535)
X’%)XX ®= Alarm device (other than X, T., C.)

(Note) TO00-T063 are 0.01 second timers
T064-T511 are 0.1 second timers

User’s manual - Functions 229

5. Programming Language PART 3 PROGRAMMING INFORMATION

Action program and The action program corresponds to 1 step, and the transition condition
transition condition corresponds to 1 transition.
These are programmed by ladder diagram.

(1) Action Program
The size of 1 action program is 11 lines x 11 columns as shown
below, and the number of instruction steps is a maximum of 121
steps.

t [

10 11

1
T
1
1
1.
1
4
T

! .
i | | 1 1 | 1 ! |
) 1 | 1 1) 1 1 |
2 4 HH---- R e L cedeiamdecama hmeaclovweedacamand
M [[I [1 i i 1
. 1 1 1 | i 1 | 1
\ 1 1 1 1 1 1) 1
" 1 1 1 1 1 ' |)
3 [—t---- oo immad T bt = - ——— b ———]
| | 1 t | I] | 1
| 1 ! ' ' 1 ' I 1
H ' 1 H ' I 1 1 I
L ! ' 1] ' 1 1 l
4 _____ I____'T _____ e eSS TTTTTAT T [it e S
H 1 ' 1 1 ¢ 1 t I
1 1 i 1 1 [} i 3 1
1 1 i 1 1] i] 1
L 1 1 SR | Y R PR
5 —| l-— ----- T-— [THTTTTTrTTTTA 1] 1 [
| t I I l i 1 1 I
H ' 1 1 1 1 1 1 ¢
\ ' I I t i 1 1 '
6 @ ™~ pFr---- P S O PR [EPEI P I —
H ' ! 1 t 1 t 1 1
H ' t ' 1 1 t 1 I
H 1 t | 1 1 t 1 1
H 1 ' 1 1 |) | i
7 M- e e e e [l Bl bl prmmmmpm—— g —
1 | 1 1 1 t | ! I
H 1 1 1 1) | i 1
) | 1 1 1 ! ! ' t
' I 1 1 !
8 Mrr-—- PO ety m- itk Sttt Ity [it Il
| 1 1 1 t 1 1 | 1
L ! 1 1 | 1 | ! !
' 1 ! [1 1 i 1 1
..... S S5 e
9 | 1 i i 1 1 I 1 1
! I 1 1 1 1 [}] 1
1 1 I 1 1 L [}] I
\ 1 1 1 I : 1 1 I
10 P==— =T === == == pemm—pm o — P s ———— e = —
I b I 1 1 i 1 1 I
I] I I 1 1 1 1]
I 1 1 I L 1 1 I 1
L 1 I] 1]] 1 i

no YH

In a case when a larger size than the above is required as an action
program, a sub-routine is used. (CALL instruction)

Even if there is no action corresponding to a step, this does not affect
SFC operation. In this case, the step becomes a dummy step (a step
which waits only the next transition condition will be satisfied).

In programming, by designating the step on the SFC screen and
selecting the detail display mode, the monitor/edit screen for the action
program corresponding to that step will appear.

In the case when the content of the action program is only 1 instruction
out of SET, RST, coil, invert coil, positive pulse coil and negative
transition-sensing coil, direct editing can be carried out without putting
up the detail display screen. See the programmer (T-PDS) operation
manual in a separate volume for this operation.

230 PROSECT3

PART 3 PROGRAMMING INFORMATION 5. Programming Language

(2) Transition Condition
The size of 1 transition condition is 11 lines x 10 columns, and the
number of instruction steps is a maximum of 110 steps.

1 2 3 4 5 6 7 8 g 10
b
I e R o S S
B e
o HHA
s HH
o 1 e
S 1141 A
SRR
S 1 e

L A s e e o e

1" e i

When there is no transition condition corresponding to a certain
transition, that transition condition is always regarded as true.
(Dummy transition)

in programming, by designating the transition on the SFC screen
and selecting the detail display mode, the monitor/edit screen for
the transition condition corresponding to that transition will appear.
In the case when the content of the transition condition is only 1
instruction of NO contact or NC contact, direct editing can be carried
out without putting up the detail display screen. See the
programmer (T-PDS) operation manual in a separate velume for
this operation.

— NOTE
VAV

' The following execution control instructions cannot be used in
action programs and transition conditions.

» Jump (JSC/JCR, JUMP/LBL)

* Master controi (MCS/MCR, MCSn/MCRn)

* End (END)

* FOR-NEXT (FOR/NEXT)

Also, the invert contact and various coil instructions cannot be used
in transition conditions.

User's manual - Functions 231

5. Programming Language PART 3 PROGRAMMING INFORMATION

Execution system The following shows the concept of the execution system in one SFC
program.

(1) In one scan, evaluation of the transition condition, the step transition

processing and the execution of the action program are sequentially
operated.

(2) Evaluation of the transition condition means the execution of the
transition condition connected to an active step and carrying out a
check for transition condition establishment... At this time, since
evaluation is made only for active step, there are no multiple step
transitions by 1 scan in consecutively connected steps.

For instance, as shown in the diagram on the |—_J:|
right, in a program in which the transition 100
condition from step 100 to 101 and the
transition condition from step 101 to 102 are
the same, step 100 becomes active in the 101 []
previous scan, and when device @ has been
swiiched CN in the present scan, there is
transition to step 101 in the present scan. 102 I:|]
(Transition to step 102 will be from the next

scan onward)

®

@

(3) Step transition processing means making the previous step inactive
and the following step active if the transition condition is satisfied,
based on the result of evaluation of the transition condition.

(4) Execution of the action program corresponding fo the active step is
carried out by switching the power rail ON, and executing the action
program corresponding to the inactive step by switching the power rail
OFF. At this time, as shown in the following diagram, the execution
sequence is from top to bottom, and from left to right in branches.

—
L
[]

o bdn
[]
L

The numerals in the diagram
show the execution sequence
of the action programs.

L
1

232 PROSECT3

PART 3 PROGRAMMING INFORMATION 5. Programming Language

Points to note The following is a list of points to note when creating SFC programs.

(1) The capacity limits of SFC programs are set out in the following
Tables. Be careful not to exceed these capacities.

¢ Overall Capacities (Maximum numbers which can be
programmed in the T3)

Number of SFC main programs 64 (0-63)
Number of macro programs 128 (0-127)
Number of SFC steps 4096 (0-4095)
Number of SFC labels 1024 (0-1023)

» Capacities per SFC Main Program/Macro Program

Number of SFC steps 128
Number of instruction steps (SFC, actions
1024 steps*

and transition conditions total)

Number of simultaneous branches 5

SFC edit screen capacity 128 lines by 5 columns
» Capacities per Action/Transition condition

Action program capacity 121steps*

Transition condition capacity 110 steps™

*) See 5.5 ‘List of instructions’ for the required numbers of steps for
SFC instructions and ladder diagram instructions.

(2) The starting and re-sefting of an SFC program is carried out by the
SFC initialization instruction (SFC instruction/ladder diagram
instruction). SFC initialization makes the steps in a designated area
inactive and makes the initial step active. Therefore, the area of the
steps designated by SFC initialization (the number of initialized
steps) includes all the step numbers which are used in that SFC
program (including macro programs as well). Take care that step
numbers used in other SFC programs are not involved.

-For-instance,-if the SFC initialization designation is 50 steps from
step number 0 and step 50 is used in that SFC program, when SFC
initialization is executed with step 50 in the active state, step 50 will
remain active.

On the other hand, if the SFC initialization designation is 201 steps
from step number 100 and step 300 is used in another SFC
program, when SFC initialization is executed with step 300 in the
active state, step 300 will become inactive without any condition.

User’s manual - Functions 233

5. Programming Language PART 3 PROGRAMMING INFORMATION

(3) There is no limit to the step number sequence used in 1 SFC
program (including macro programs). However, the initial step must
be made the lowest step number in that sequence. (See (2) above)

(4) A sequence selection diverges above transitions, and converges

below transitions. Also, a simultaneous sequence diverges above a
steps and converges below a steps.

P 1o oo

L b

However, the divergence must end in a corresponding convergence.
Therefore, programs such as the following are not allowed.

234 PROSECT3

PART 3 PROGRAMMING INFORMATION 5. Programming Language

(5) The jump destination of a SFC jump may be either in the upward
direction or in the downward direction, or it may be in another SFC
program. Also, it is possible to jump to the outside from inside a
branch.

Since a SFC jump can be very freely used in this way, take
thorough precautions so that the SFC logic will not become
abnormal (so that multiple unrelated steps in a series of SFC will
not become active) through jumping.

A SFC jump is always positioned immediately after a step, Also,
although basically a SFC label is positioned immediately after a

transition, it is positioned between the convergence line and the
step in the case of a sequence selection (convergence).

=N -

B

(6) The states (active/inactive) of SFC steps are not retained for power
off. When starting-up, all become inactive.

(7) The output of an SFC step can be controlled by sandwiching the
SFC program block by ladder diagram master control (MCS/MSR).
When the input of MCS is OFF, the power rail of the action program
corresponding to the active step also becomes OFF. However, in
the state, step transition is carried out.

User's manual - Functions 235

5. Programming Language PART 3 PROGRAMMING INFORMATION
. . __ |

54
Programming The T3 supports multi-task function. When using this function, there is
precautions the possibility of the sub-program being interrupted by the main program
or the interrupt program, and the main program being interrupted by the
interrupt program. Precautionary notes arising from this are given
below, and should be taken into account when creating programs.

(1) Avoid using the same sub-routine in the main program, the sub-
programs and the interrupt programs. When the main program
exection is interrupted during a sub-routine is being.executed and
the same sub-routine is executed in that state, the results after re-
starting are sometimes not as expected.

(2) There is no classification of user data (registet/device) by program
type.Therefore, take thorough precautions that there is no
erroneous mixed use between program types.

Example)
interrupt
Ro pal he
[\
RO Y1
+f —

Interrupt occurs through the timing in the above diagram. And when the content
of RO is medified in the interrupt, the simultaneous ON (or the simultaneous
OFF) of YO and Y1, which normaily could not occur, happens.

(3) Try to execute the exchange of data between different program
types by 1 instruction or by using the interrupt disable (DI) and the
interrupt enable (El) instructions. Otherwise, the same thing as in
(2) above may happen.

Example) Composition of the main program when transferring the
three data, D1000, D1001 and D1002, from the interrupt
program to the main program.

D1000 MOV D2000 —
D1001 MOV D2001 ——
D1002 MOV D2002 ——

236 PROSECT3

PART 3 PROGRAMMING INFORMATION 5. Programming Language
m

In the above program, when an interrupt occurs between
instructions, synchronization between D2000, D2001 and D2002
cannot be guaranteed. In this case, make 1 instruction by using the
table transfer instruction, as follows.

H D1000 TMOV (3) D2000]—‘
Or sandwich these instructions by DI and Ei instructions.

(4) If the same index register is used in different program types, the
data of the index register should be saved and restored as follows.

Example)
may be interrupted here
(Sub-program)
!
H Awoso MoV 1 [D1000 MOV RW050 }——]

(Main-program)
1~ | MOV D000 ———
.-[. I Saving |
n-1|{ p8ooo Moy | }— | {for sub-program)

Restoring |
n {END]]
(Interrupt program)
1 {1 MOV D8010 }————]
|—£ . . Saving |

| : !
n-1 - D8010 MOV |] (for sub-program)

Restoring |
n [IRET

With respect to the main program, the data of index registers are
saved when interrupt occurs and restored when operation returns to
- main program-automatically. However, because of this, even if an
index register is used only in an interrupt program, the data
continuity of the index register between interrupt intervals is not
kept. In such case, use another register to store index value
substitute the value into an index register in the interrupt program.

User's manual - Functions 237

5. Programming Language PART 3 PROGRAMMING INFORMATION

5.5
List of instructions An instruction list is given in the sequence of ladder diagram
instructions and SFC instructions on the next page and thereafter.

The groups in the list correspond to the group classifications of function
instructions used in the programmer (T-PDS). (Except for SFC).

The required numbers of steps signify the size of memory required for
storing these instructions. The showing of the required number of
steps by a range such as 4-7, is because the number of steps changes
due to the following conditions, even for the same instruction.

+ When using digit designation, there is an increase of 1 step per 1
operand.

* When a constant is used in a double-length operand, there is an
increase of 1 step.

* When executing index modification in a constant, there is an
increase of 1 step.

The minimum execution time figure shows normal case value, i.e. when
no index modification, no digist designation and normal registers are
used for each operand.

The maximum execution time figure shows worst case value, i.e. when
direct input/output registers (IW/OW) are used for each operand, etc.

NOTE
VAV

Here, an overview of each instruction is given. See the instruction
set manual in a separate volume for details.

238 PROSEC T3

5. Programming Language

PART 3 PROGRAMMING INFORMATION

(s11) pasnbias swy uoynoaxy

- — — 1 -weiboid-gns pue werbold usw jo pus sajBNpPU] _I_” aN3 HI puz
— S10 _ ¢ I” 4or ul_ 1o881 jonuoo dwnp
‘NGO 1 indut usym HOf PUB SOr Usameq
suogorsul uo Buddns peads-yBiy Ino seuieD
- 510 - L |ﬁ Sor H_.l 188 (000 dwinp
. - 440 01 NO wou4 pebueys IZVI 1100 Bujsuas-uomsuel |
844 090 - r st Induy usym ueas | Joj NO (v) eajrep swiny, (v) anyebeN
. i "NO 0} 440 wody pabueyo _An_v.z (102 Buisuss-uonsuel]
L4 090 - ' 1 indul usym ueos | 1o} NO (v) 8diaep suing) aatiisod
, . ‘440 0} NO woJ) pabueud s) {y) axmep I_z_l Reu0d Buisuas-uomsuei]
§L'L 090 - ' pue NG s Indul usum uess | Joj NQ Jndino suing (v) anjjebeN
. , "NO 01 440 wody paBuey si (y) samep I_n_T PRU0D Buisuss-ugisuel
§L4 09’0 - ' pue NO $11nduj ueum ueds | 10) NO INdINo suIny (v) aalistd
o f oo . H0)-
'L [1;44] —_ 1 (v) 891a8p Y| S91015 puE 9181 indul ay) suaAy|) 102 Jaau|
— IR — 1 epe;s Indw ey} sUaAu| I_ _ T lousAu|
(v)
_ 810 _ L ‘440 10 NO S| Indul I u.x 102 p82I04
1eyjaum Jo ssejpimbal (v) ealaep jo a)8|s suley)
Sh'L 0£0 - I "NO st Indul uaym NO (v} 821Aep SaUoIMS _.AA W| 1o
A
_ , . ‘440 St uBas sy} ul Indul puB NO S1 Uess 6 "
09°0 p snoeid sy b indut usym Aluo NO Indino sayoums I_Zt (Buiiey) 10E10D [eUOHSURIL
_ . _ "NO §| UB2S siyy Ul Indul ey pus 440 I uess 6 o EUOH
090 i snomerd 6L U] 1Ndu UayM AIUG NO IndIfo SALOIMG L}~ | (Buisu) riuco euomsuell
St'L 61’0 - [} (pesoja Ajeuiou j1oeied) () SatAep JO JIBW0D DN +~) 10RWU00 ON
v
. . _ I_ _I SUoRonIISUI
Sh'L TR 1 {uado Ajewiou pejuns) (¥) 8oiAsp J0 10BIU0D ON () 10BIU0D ON sousnbeg
painoexa
WhunXew | wnwiuy 10N pennbas o
sdays Aewung uojejuasalday alueN ZDZu dnoig
J0 JaqunN

Amco_#.oa_mc_ eousnbag) suoponssu| weibeiq Jeppe

User's manual - Functions 239

PART 3 PROGRAMMING INFORMATION

5. Programming Language

W sejeAloe pue (y) Aq payivads Je)siBal Jow

gs'g 59 0g'0 z $189(0 "N 01 440 WOl paBueys s 1ndu] USUM — WouL }- 1066 JowiL | gl
{(1squunu Buysau
FN o0g'0 - 4 (1) T_H UHOW H_I_ Yilm) 18581 [0JjU0D Jajsel sel
wequnu fugseu B sju NO $ Indu SO A .
usym Bupuodselico o) 1ed Jamod NO swinL Jaqunu Buiseu
S6¥ 0EQ — 2 4 O EUIP ! H usow u] i) 108 joauoo seysepy | PEH
— =]] — I _I_H HOW T 1858) [ORU0D JBISBIN
"NO s1 Indul oW
usym YW PUB SOW Usamiaq |Ie) 1emod NO Sun)
— 510 -— 1 H sow }- 196 |0AU0D Jajsep
“lgpesiBal 1aunod sp (gl "NO (D} indino suin Ty} A
&Ll 050 _ z peyiaeds anfea 16s 0} [enbe sewoeq enjea Junoo (&) (v) 3 J19N0D
usypy "NO 8wiod sey () Indu) Junoa ey sawy DINDD
JO JBqiunu 8y SJUNod ‘NG St (3) Indul ejgeusa Usum
EELEY
g58 | 080 — z Joun st (8) "NO 800 Indu; ueym Buiiels ‘(v) 4q —{ @ sstv) |- saw Joys aibuig
peyioads ‘poped jes 8y} Joj Ajuo NO iIndino suing
LY
56’8 080 - Z Jow | (g) I4Q em indur souis pasdeys sey ~[(@301} - tauu Aejop 440
(v) Aq payweads poped 188 usym 440 INAINC swny
Jeisibal sojonIIsu
ss8 | 0g0 | — z Jauw s (g) "NO wed Indus souys pasdea sey —{ @noLv) |- sau Agjep NO bac
aouenbag
() Aq payioads poued j1as ustm NGO Indino suing
panoexe
WNWIKER | Linuun 10N pannbas o
sdejs Aewwng uoieluasalday swep NN dnoig
10 Jequinpy

(srl) paunbas ausy uopnoex3

(suononnsu| esusnbag) suononlsu wesbeiq reppe

240 PROSEC T3

5. Programming Language

PART 3 PROGRAMMING INFORMATION

(0) - 1+{D) urynsai ay) saiols pue) - 1+(v) jo

{sr) pesinbel swy uopnoexgy

" . . . — . - K -
8612 zzl g0 6~ | quamuon au woy (g) L+(g) 10 SIUANOD B} SIVEIGNS ITUV F+{0) — (g} 1+(@) -a ()1 Eﬁl uoncengns yibuel-eignog | 2¢
. . . {2} - 1+{0) W insas ay) sai0is pue (y) - L+y) LAY e (). L) + O .
8612 2zl 90 6~P 10 SHIB100 6L 0} () - 1+H(g) o B Ou} SPPY I_HGV 1+0) — (@} 1+g) +a (v)-1 AS“T uomppe whus-agnog | 1e
. . . “14+{0) W Jepureiial su) puB (o) W uenonb ay) seuols —
o'06) g1l 90 I~t @) 10 SN0 B) AQ (y) 0 SIBIICO 9L SSPINIG |ﬁ (D) —(a)/ n<ﬁ_| voising ! og
. . . (D) - 1 + (O} wynsas sy} sa10ls pue LA
1'E8L £5'9 90 L~¥ (@) 10 S0 Sup Aq () J0 SIUBIICO Bl SAIAINI I_Hnov L) (g} + () H_l uoneoydunpy | 62
. ; . (0) uy unse) eup sa101S puB ‘(v) (e -
Legl sae g0 i~y 10 SUBjUCD AL WOl (F) JO SIUBIUOS By} SPRINS I_H (0)—(8) - (v) u| uonorINg | 82
. . . (0) v sy oy sal018 i) + suojjesado
HEIL gg'e 90 L4~ | pue ‘(y) Jo susoD Byl 0} (g) JO SIUSILICO O SPPY |ﬁ§ @ Aﬁul UOWPRY | L2 | ey
“(8) Aq papeay ajge}
ueperesezjusl itz el 90 g~p oy o) (y} Aq peprey u Bz1S Jo 8|gE OY] |0 S|UIU0D I_H.”m: () LONL (v) H_l J19JSUBI pue Yeau eqeL | 92
ay) Buisudwon viep pesieasi-lig ayl siajsue)
. S . () Aq pepesey eiqe) syl o} ‘() Aq pepeay
UPSHE'SEZ (VBT L] 970 9t 11 8215 10 BIGE] O} JO SIUBILOD B} SIJBLB] |_Hﬂm= (u) AOWL A$H_| sojsuel oiqey | sz
ugaL+o 12| ug ot . (v) jo saiuca au} Aq ‘() A9 |_H (@) (W) ZNIL (v) H_| uoneziemul aqeL | ¥z
FOMYLL UECHIEY | 90 9~V | papeay ‘v 8zis jo aiqe; BY) JO SIUGILCY BY) SEZHENIU] Hezjemul
: . . (9) - 1+(g) jo siuawoo L s abuBioxe
§912 691 Sv'o §~€ au) yum (v) - 1+ JO SIUBIUGD B sebusyoxg |_H (@) 1+(@) Hoxa (v} 1+(v) H_l ejep yibusl-aignog | €€
. . . {a)
gvel | SEL | SYO S~E | o s1uewo00 syl yis (v) jo siualuoo ay) sabiueyox3 ~{ @orox W) |- ebueyoxe B2 | 22
. . . (@) pue L+ (@) 01 (¥) pue L+{y} jo siuejuoo L+ . Jojsuel)
gevt | Sb'6 S0 9~g aul BUISUA00 B1Ep PISIOABIIG BU) SIBISUEIL —{ (@) 1+(@) LONG (v). 1+y) |- oue vonul bus aanea | 2
.) . “() o4 (v} Jo susjuoo
LELL 529 SK0 5~ oyl BursudwWon Biap PISIGASI-IG SU) SISISURIL |h {g) 10N (v} H_l JajsuBn pue peau|| oz
. . . @ 4t L
£6bi 8g/ SH0 98 puB |+(g) 01 () PUE 1+{y) o SIUBNOD Sijsues] I_H (9)- 1+{8) AONG (v): L+(y) H_I seysue,y elep Wibua-aignog | 61
.) .) SUO[ONASUY
9z1l 60 Sv0 G~f {g) o1 () jo spusuoY sIejsuBI| I_H () AOW (v) H_(. Jojsuel vied | gt J0ISUE)|
paingexs
wnwpe w170 pesnbal o
sdols Areuaung uonejuasaiday BweN NN dnoig
10 J3qUINN

(suononssu| uopound) suononisu| weibeiq seppe

User’s manual - Functions 241

PART 3 PROGRAMMING INFORMATION

5. Programming Language

{6l o's e'0

L AQ{y) - 1+{v) JO SjUaUCI By SjusaIda)

—{) g

wawassap yibusl-ejgnog

4

(AN

*L Ag () Jo sjuejuoD ay] sjuewalIa}

~{ W}

Juaiualdag

i 4

Leri o8 €0

"1 AQ (y) - 1+(v) Jo SjuBIoD By SUBWaIOU|

— @1+ 1+a -

Juewaiou Yibuel-ajgnog

rell 869 €0

‘L Aq () Jo sjuejuod et} sjuawaiou|

— v+

jualwialou|

114

§'902 6'tc g0

“(uope.edo 1eBe)u| paubisun) L+{D} u
iapuiewel ey} pue ‘(D) u uenonb aut ses0ls g} jo
susIuos &y Ag (y) - 1+{y) Jo sjuajuod sy} sepinig

—(0) — (@) na (W) 1+

uoss|Ap
e|Buis/egnop paubisun

(44

paic]] 691 90

-{uoneiado 1ebejul paubisun) +(0)
uj IspuiEwal By} pue ‘(D) ul Juagonb euy salols pue
‘(@) 4o spuaiuco auy Ag (v} Jo SjuB1U0D 8L SBpIAIg

—{to) — @ v}

uolsiap paubisun

or

S'¥81 o9l 90

“{uonB|naea 1ebaiu
paubisun} (1) - 1+{D) U YNSOI BY} S8I0JS pue
‘() 1o spusju0o ey Ag (v) jo sjuaiuod ev) saydiniy

—{ @1+ — (@) *nv |-

uoneondynuw paubisun

62

Fiee ovl 90

G~p

‘jnsay

uoneiado ey} o) Bujprocoe sabueyo Bey Aues oy
() - 1+(0) wunses ey seiols pue *{y) - 1+Hy)
Jo sueuoo ay) wosy Bey Aued ay) jo SiusU0D

oy smd (g) - 1+{a) j0 siueioa sy sloBigng

—{ (0} 1+(0)—(a) 1+(8) 0-Q (¥)- LH(} |-

Aes yim
uojoengns yibuel-eignog

8g

9'18e oyl 90

“linsai uoeiedo ay; o} Bupioaoe sabueyd

Bey Auea ay) (D) - L+H{D) urnsel sy) selolS
pue '(g) - 1+(a) jo sjusiuoa sy pue {y) - L+{y) jo
S|uaLoo auy) 0) Bey Aied ey Jo sjueILD Byl SpPY

—{(0)- t+(0)—(@)- 1+(@) O0+a (v} 1+{v) |

Alea
yim uotippe yiBual-sjgnoq

L€

69l 6 9'0

‘ynse1 uofielado sy} 0}

Buproooe sebueys Bey Ao syl (D) w ynsal eyl
s8101s pue ‘() Jo sjusjuod ayj wo.; Bey Aued ey
Jo Sjusjuod ey} pue {g) Jo sluBUDI By SiRIYNS

—H{© —~@ oW}

Aded UM uofoengnS

9

691 81l g0

L~¥

InsaJ uojelado

eu} 0) Buipioaoe sebueyo Bey Aued eyl (D)

ul Jnsed oyl 5840js pue ‘(y) Jo slualuo eyl 0} (g) jo
sjuajuod ayy pue Bejy 4B ay) Jo SlUBILIGD BU) SPPY

—{{0) — (@ ot vl

£u1e2 yim uonippy

SE

seez | 22 | 90

6~¥

Z+(0} - £+{D) Ul Ispujewsl eyl pue
{0} - 1+(D) upueponb ey saiols pue ‘(g) - L+(g) o
sjueluco oyl Aq {y) - t+{y) jo slusuos syl SEPIMIQ

—{ 0):1+0) -~ (@) 1H{@) /a (v} 1+(¥) |-

uoisiAlp yiBusl-afanoq

0'vse 4 90

6~F

{0) - 1+{D) - g+3) - €+(0)
u| ynses eyy selo)s pue '(g) - | +(g) Jo swweoo
oyl Aq (v} - 1+(v} Jo sluejuoo ayy sadniy

—{(0)1+(0) — (8) 1 H{@) * a (v} 1+(¥)]

uopsondmnw wibuay-signog

€€

sucjelado
OliSWYiy

WNLUIXeR

poINdaxe

wnuiuy | ™00

(sr) paanbes awm uonnosxy

pannbe:
sdais
J0 Jaquiny

Aewwng

uogieesaiday

swiep

‘0N
NNd

dnoig)

(suononnsu| uonoun4) suononisu; weibelq Jappe

242 PROSEC T3

5. Programming Language

PART 3 PROGRAMMING INFORMATION

{sr}) pannba) s uolINdax3

. . . (9) - 1+{0} upy sauols pue () - L+(@) HO sAIsN%e
veiz | L1 90 6~% | pun () - 140} 19 O eAIsNIoxe eagsBeu syt spury | L) HHO)—(8): 1+(8) ENIA (V) 1+v) |- Jon uiBust-aignog | 59
. . . () w i salols -
929l 89'6 20 L~V | nue (@) pus (V) 10 HO aAsnioxa eiebiau i) spuly I_H (0)-—(@) uN3 ASH_I HO SASNIX8 JON | b5
. () - 1+(2} ur i seuns pue () - 14+(a) . . .
V612 PN 90 6~ DUE (y) - 1+(y) J0 L 180150} BAISNIOXS BU} SPUI Imov. L+{0)—(a) - 1+g) HOAa (v} :?ml WO aasnioxe yibual-aiqnoq | €5
. . . () ul y saucys
9291 | 896 90 L~ pUE (g) pUE () o HO [e0lB0] GAISNIOX 6L} SPUIY —{ (o)—{g) yoa (v} }- HO emsnpxa | 29
5 . . “(9) - 1+(0) uty se1cys pue i .) i
618 FNtl 90 6~ (@) - 1+(g@) pue (v) - 1+(¥) 10 HO 6310l 81 SpUl I_”AOV 1+(0)—(g) ++(g) Hoa (v} _.+A$HT HO wibuaagnog | 1s
. _ {a)
9esL | 896 1 90 i~y ul se101s puB (@) PUB () 10 HO 180160 8u SPUKd —{ ©--@uow |- Ho| 08
. . (0 - 1+{0) w sauois pue -
velz | 21 90 6~F | (q) . 1+(g) pur (v) . 1+(y) o ONY 1olBor oy spurg | —O)- H+(D)~(8) - 1+ (@) aNvaly): Lyl aNv wiBuel-sianng | &v
. .) (2) suoneado
gzoL | 896 90 L~¥ |y seso1s pue (g) pue (v) Jo aNY 180180 8y spuId —©) (&) anv (v} GNv) 8v eaifio]
. : i () - 1+(O) Ul Inse ey selals pue Y(g) - 1+(8)
8002 | b€ 90 v A9 () - $+y) Jo B1Ep Jutod Bupeo); B} SOPING —{) 1+0) — (8) - 1+@) /4 (W) 1+(w) |- uoisiaIp Jutod Buneold | 1z
. (o) - 1+{0) wnses eyl seuois puk (d) - 1 +HE)
5022 65 90 v 4q (w) - 1+{¥) Jo e3Ep Wod Buneoy ey ssndningy — (0)- 1+(0) — (@) 1+{8) 4 (V) 1+{y} }— | uoneondminu juiod Bupeold | 012
. . . {0) - 1#+(0) U nses oL saloss pue (v} - L+{y) .)
666t | ITVE 90 ¥ woip () - 1+(@) o Brep uod BUIEDH Sy SRIGNS —{(0)1+(0) — (@) L+{8) -2 {v)-1+V)]~ | uopomnans jurod Buneaid | 602
. . (9} + 1+{(D) uy unses ayy salols pus (g) - i+{8) suayesade
0’661 £Ee 9'0 14 PUE () - 1+{v} jo B1ep Juiod BulEo) 8L SPPY I_H@. L+ — (@) 1+{g) +4 (v) EEI uopippe Juiod Buneord | g0Z Sy
pojnoaxe
wnwpxen | wnwugy 1N peinbas .
sdais Arewwng uopeuesaldey sweN N :zu_ dnosgy
10 J8QUINN

{(suononiisuj uodund) suononiisu| weibeiq Jeppe

User’s manual - Functions 243

PART 3 PROGRAMMING INFORMATION

5. Programming Language

ugg'oti6hL

ugeoteol

90

"Insed ay) o} Buipioooe sebueyod Hey
Aueo eyy (@) ui ynses sy s21018 pue (UoyoaNp
GS) Yo| 8yl 0} s1q U {v) Ul ejBp U SIUS

— @—umsly) }-

W Hysuqu

LWL

uggoHoal

ugg0+59'6

90

"|INses ay} o} Bujpzacoe sebuelo hey
Ausa eyy. “(g) u ynses eyl $e10ls pue (uoioaip
A5} b ey) 01 s U (v) ul BjBp eyl SHUS

— @-uuHs (¥) |-

Wb s wq u

0L

9L

£

€0

nsa) eyl o) bujpiosoe
sobuyd Bejy Aueo ay) () ur inssl ey} selols pue
(vonaeup SSIN) 4Bl 8l 01 1 | (v) Ul Blep aul SIS

—~ @ ims -

Halyus i |

69

(3433

gg'g

€0

‘1inseJ eyt 0] Buipioode sebeyd bey
Aieo syy () urynse) ey} sei0)s pue (LeioaIp
g57) 46U ayl o1 1q | {v) Y| BEp aUl SHIUS

—{ () iuHs -

WBH BIYS ug |

89

syys

8t

0Le

90

(@) Aq papesy u e2i8 a|qe)
1 2t o g Wily) oY) jo 81EIS JJO/NG 24 sepIveq

—{ @Wisu}-

IS8 i 9|l g

29

8ovt

EE'8

S¥'0

"¢ uey soylo 81 (g) - 1+(g) pue (v)
L+(y) Jo gNY [eo1Bo) Byl § NO Indino ey swing

—{ (@ 1+@isialv) v} -

1891 Uibue|-eiqnog

59

<001

86'9

S¥'o

*0 uey; 13yio st (g)
pue (y) jo gy 1Balbe) eyl) NG INdINO ey swing,

—{ @ 1531 }-

158l

9

ug'iztearl

ug'+iap

SL0

[0) Aq papeey uoyed0| ay) Lh § S80S pue
(a) Aq pepaey u 6z|s Jo eiqel ayy pus (y) Ad papeay
U 821s JO 9|qe} 3y} JO HO eAlsnaxXe LON eu) spuld

—{ @@ wuNaLly) -

HO ansnjaxe 10N 8iqel

08

ug'Lg+iars

ug'i+ioy

SL0

"[5) Aq PAPESY LO{E00] 8L} U} |l S8I01S pue fg)
Aq papeay u azis Jo s|qel 8y} pue (v) Ag papeay
U 2Z|$ JO 8|qQE] By} jO HO SAIBNOXa ay) sputdy

—{ ©o)-(a) WyoaLly) -

HO aAISN[oxa a|qel

69

ug'lgrearl

ugri+Lgy

SL0

{0y Aq pepeai] LGB0 au U I SBi0iS
pue ‘(@) Aq papeay u 8z|s Jo 8|qe} ay) pue () Aq
pspesy u 821s Jo 8|qE1 BUL Jo YO 180iBol syl spuld

—{ @ muoLv)

HO ajqei

89

ugig+aevt

ug' L+ ge

S0

() A4 PapeaY UGHES0| 34t Ul)l SeI0is
pue ‘(@) Ag pepeay U ozis Jo 8|qe) ay) pue {y) Aq
papeay U az]s JO BIqe) 8u) jo ANY [80160] 8y} SpuUld

[(@-@ W anvLly) |-

ANV 9]981,

LS

suoneledo
[eaifio

WNWINEBY

wnwpy

peihoexa
oN

(sr) peiinbas awn uopnosxs

paunbas
sde)s
10 Jequny

Arwung

uopeuasesdey

aule

oN
NN

dnoig

(suoponiisu| uonoun4) suononiisu| weibelq Jeppe

244 PROSEC T3

5. Programming Language

PART 3 PROGRAMMING INFORMATION

6L c0t €0

001 1-{v) 195 pue ‘(y)
U1)i 821018 ‘() aownap ey sepacaid Ajeaipawiu
HoIm (1-(w)) eo1nap ey} Jo SIUBILOD BU) SexBL

— () 1ds -

Hus eoiaaq]

9L

USL 9+’ UGLBHYSE | SY0

unsed

o1} 0} Buipiooor sabuyd Bey Aaeo sy, ((7) nduy
uonaaNp 2y} O 8RS 8U) uc spuadap uoloBNP HIUS
ay) 1By By} oy Jo ye; ey} 03 11G L Weul SHIYS pue
(v} aomep ay) AqQ papeey Sedinep U 8y jO SJua0d
oL} S8y} UONONISU| ey ‘NO sewod (S) indu)

(w) 1

uw s
pysad

Je1siBe1 Piys (eucpaanpig

SL

uglgHi'gS| UBL'SHESE] SP0

HIUs ey uaysm uay ‘NG St (3) Indul aigeue ey i

i ‘insa) ay} o) Buipioaoe sebusyo

g} Ao ay] "¥e| 8yl 01 3 | Weys SiYs pue

(v} aonap ayl Aq papeey 5e0ASp U Y} jO Slusjuod
8l) saxE) UoRanAsy| 9Y) 'NO sewoed (g} Induy

Hius ey} usym uaLy ‘NO st (3) indul sigeus eut |

v) 3
) s
odsa

IaysiBor Yy

172

Uty 0 ugz'n
HWBLO | +wes) 9'0
+0'06 LT

‘IinsaJ sy} 6}
Buiprosor sabuya Bey Aued oy (v} Ag paleoipu)
s)q o taguinu eu) Aq (Uonaedp gSIv) yel e

o})f syius pue '(g} Aq popeey efi} #q-Ww ay) seyal,

:201A8p B i {g) usum

"(¢) £q pajeaipul Spiom

J0 Jequinu ay) Ag { uogosip sseuppe uBy) 18| ey} o)
1 sjiys pue '(g) Aq pepeay 8)qe; pJom-u au) saxs|
Jesifos B s (g) uaypa

—{ @—w)msLv) |-

S| HIYS SHY U 8| g W

gL

W0 HEZ'0
twgLg | +wel' 90
+9°L6 +8'9¢

: "{nsaJ 8y} 0}
Bujproooe sebuyo Gey Auea ey (v} Aq paieoipuy
slig jo Jequnu auy Aq (Uonaenp gg7) Wb eyl
011 SIus pue '(g) Aq papesy aj #G-W Bu) SayBL
‘@olAsp e 81 (g) uaumMm

“(w} Aq peiRapU) spiom
Jo Jaguinu ayy Aq (uonoesp ssaippe maf) ybu ay o1
U siiys pue “(g) Aq papesy 8iqe) PIOM-tU 3L} saxel
Leysifes e si{g) usupa

—~{ (@ —(w) yHsL (v} |-

WBU Yiys sHq U el hg W

cl

wys

paymaxs

wnuixep | wnaa |70

(sr) paynbas ewn uonNoeXy

palnbei
sdels
JO 1aquiny

Arwuwng

uoneeseidey

awep

NN

dnogy

(suononsisuj uonound) suononnsu wesbelq Jeppe]

User’s manual - Functions 245

PART 3 PROGRAMMING INFORMATION

5. Programming Language

LAY

66

£~¢

‘ynsa) ey 0} Buipiooge sebueya
Bejy Ared ay) Bep Aueo ay; Gtpnjout {uonoenp
857 Wby sy o1 1q L (v) up BlEp 8y} seleloY

—{) 1 oud -

A yym by erelor g |

¥8

ugo
TWPe0
+0'801

wsg'e
+9°0€

90

Iinsai ey} o) Buipiosoe

sefiueya Be)) Aueo ayj (y) Ag peypeds siq jo
Jaguunu ay) Aq (Lonoanp GSINY 4O 8L} 0) Y 8180l
pue (g1} Ag pepBeay ‘sNq W jo 8|y Nq Bu) Seye]
1aonep B 81 (8) usupp

() AQ peyoads spiom jo Jaquinu

U} Aq (uonosup sseppe yBiIy) Yo} eyl o) i serejos
pue (g) £q papeay 'SPIOM L JO 8] SU) SeqB)
Jaisifien e s1 (g) usym

— (@ (wh L) -

US| ejelos s)iq U 8y ¥q w

£8

ueso
+UbE'Q
+O'EQl

wsg'g
+9'0€

G~

"Iinsas ayj 03 Buypioose

sefiueyo Geyy Aueo eyl (v Aq payioads sjq jo
Jsquinu ay; Aq (uonos.p 85T} BN su) 0) 1 s8)BI0
pue () Aq papBaY 'Sl W JO Bjl}] AU seyBy
:a01Aap B si (g) uaumm

() Aq payloads spiom jo tequinu

ay) Aq (uonoedip sseappe moj) WBI Ui o) i sBlejol
pue ‘(Q} Aq pepeay ‘Spiom W O al(e) oY) soy8t
ugysibal v s1{g) uaum

—{ (@) (W yryL W -

wBu sjelod sug U By uq W

28

ug'L
+9°LLL

uggo
+8°01

9~

"ynseal
ay) o} Buiproooe sefiueyd ey Aues syy -(uogoaap
ASW) ¥et au 01 S U () Ul Blep ay) sejejoy

— @-unHy) -

Y8 slejol syq u

ig

ugriL
+8°L1

Ugg'o
+G'H

‘ynsad
oy 0} Bujpioaoe sefiueyd By Aues ayj, (uonoesp
857} B su o) siiq u () u) Blep 8 seelcy

—{ @—vuiH () }-

Wb elejol suq u

08

gL

8.8

£0

ynsal
ay) 0} Bujpioooe sebuyo Be)y Aueos sy (uoianp
asSi) ¥el aup 01 4g + (v) ul Blep eu) sa8IoH

—{ i -

ye| s|jol g |

6L

gl

€6

£0

€~

‘Jnsel
ay) o} Bujploooe sebueys Bey Aueo eyl “(uontoanp
as7) Wb a1 o1 1q L (v) ul ejep sy} salsioy

~{ W ue -

Wby alejo) uq 4

a4

sjejcy

wnuIxep

WNLWIUWY

poInoaxs
10N

(srl) paanbai awj} uonnoaxy

painbal
sdais
{0 JequIny

Arewuing

uonejueseidey

awreN

‘ON
NN

dnoir)

(suononsisu| uolound) suononisul welbelq leppe

246 PROSEC T3

5. Programming Language

PART 3 PROGRAMMING INFORMATION

6'69

£'62

540

“{oheisiBel ey ut way
801018 pue ‘(yloisibai ayy Aq papeay u 82s jJo
aiqel ayi u) JaysiBar ui@) au) jo sjuBluoD euy sexe|.

—{ (9) — (&) W) XdW (W) |-

Jaxsdiniy

06

Yes'o
+HUpgo
+g§'201

Wige'ag
+9'08

G~¥

}nsas ay) oy Buipionos sabueyo Geyy Aued ey
“(y) Aq peysaipuy sig Jo Jequinu ey Aq (uopaep
as) wbu ay; o) 1 see101 pus ‘Bey Aneo ey}
Buipnjou) (@) Aq pepaey siq W jo 8|l Iig Bu) seye]
:a0jAap & i (g) 4|

('eenn4d u uonesiioads 1e)siBe)

sg awes) *(y) Aq pejesipu) SpJom Jo raquinu

oy Aq (uonoaup ssaippe yBiy) by ey o) y serelol
pue (Q) AQ papseely SPIOM W JO djqB) 8L} Saye]
uesiber v 51 () 51

—{ @ w) oL (v) }-

Aured yum
19| 81B104 SHQ U o) 1q W

68

usyo
HULLO
+L9H

wse's
+8°0e

‘jihsed syt o} Buiproosoe sebuesyo Bey Auvo ayy
*(v) Aq pajeoipui siiq jo Jagumu au) Aq {uogoasp
857} by suy 0}) sejejol pue ‘Bayy Aued ey
Buipnjaur (@} Aq papeey sig w Jo By iq BY) SeXEL
:@oiAep B s1{a}

("Z8NN4 ul uoheoyneads 1eysiBar

sk awes) ‘(y) AQ pajesipul SPIOM JO JaGLINU

au) Aq {uonoanp ssaippe moj) b ey o})) sayejo)
pug (g) Aq papesy SpIoMm W jO B|GB] BL) SeYEL
uesifisre s (g))

—{ (@) (w) ouuL (v} |-

AdleD yitm
Wby a1ej01 SYq U BYY 1Iq W

a8

ug'th
+6'811

ug'L
+E°LH

9’0

9~

ynsal ey} 0} Buipioooe sefiueys Geyy Aned ay)
(g) w unses ey sau0is pue ‘Bey Les ey Buipnipu
(uondsNp GSINNE! 8U) 0} 11q U(y) Lt BYEp alpy sapelol

—{(@—uom v}

Aneo yum yoy a1elol slq u

i8

uzo'e
L

ugo'e
+§'g

Hnsa. euy 0} Bupiosoe sebueys Gayy Aes sy)
(g} u ynsas ey sas0ls pue ‘Bey Aieo ay) Bupnpouw
{uonoeaip gg1)yel 8yl o} ig uly) Ul elep ey seleloY

—{ (@) — uouu (v) |-

Anes ypm WbBu eej0) sug U

98

gL

S¥'6

£0

"ynse. ey 0y Gujpioooe sebusyo
Gepy Auro eyl "Bey Aues eys Gupnou (uoosnp
ISNIye| ol ol 1 Liv) Ul Bjep sy} sajgioy

— iow -

A1re0 yum Yya) Slelol 1g |

S8

e1810Y

wnwixep

WIRLWIIN

peinoaxe
JON

(s1) paunbas s uonnosx3

paunbe)
sdeis
j0 JaguinN

Aewwng

uoneuesaldey

awep

NN

droxy

(suononnsu| uonoung) suononnsu; welbe|q Jeppe

User’s manual - Functions 247

PART 3 PROGRAMMING INFORMATION

5. Programming Language

‘(Dhesibas eyl

409 L2E S0 9~ |Aqpapeay u ezis o eqe) BY; JO 1g WH{E) aul vy way) Im@ « (g} (u} wig ?ﬁl lejsued ajgel—ia | £6
$aI10)s pue (y)eaInap eyl Jo SJUSI0D ay) seNRL
“(O)aowep au)

6EL 198 G20 9~§ U)l sarols pue (yhersiBel auy Aq pepesy spiom u I_HQ — (g (VY WL ?.ﬁ_l Jgjsuel Iq—2|qeL | 26
228 Jo 8|qet Y] Jo pesy syl Wwoyy Nq uKa) aul sexel
“{o)es|Gel

g5 | 62 | seo 9~g ouy) Aq papeay U 82is Jo 8Iqe) Byl Jo JeisiBe) (o) — (@) () xda () |- sexodinweq| g

uifg) eu ut {yieisiBes ay} jo SjUBIUD BY] SAIVIG 8Eioy
panoaxe
whwew | wniwuiy 1N peinbe 0
sdejs Aeunung uonejuassidoy BUWEN N dnoig
Jo Jequinpy NN4

(sr) paunbas sun uoynoex]

(suononusu) uopound) suononnsu; welbelq Jsppe

248 ProOSEC T3

5. Programming Language

PART 3 PROGRAMMING INFORMATION

govh e &'0 L~g @..mewﬁﬂ%ﬂﬁww_ﬂ%_m:%ﬂ”_“”w_w “ @ @ =a w1+ | wely ss0] smcm_-m__“nwow 01
govl | ees | wvo | z~e Amvﬁmmwﬁw_mﬂ%wu %m_ﬁwnm_mmmﬂ —~ (@ 1@ >a (v} 1+w)] | veu sser Buat-aignoa | g0
gork | eeg | svo [-6 PR A S @ 1+@) <a (v) t+{y)]- | 1enbe tou wbust-alanog | o
govl | g8 | svo 1~€ @..memﬁmﬁwﬁ%ﬂ.mosmmﬁ_“mw_m — (a)-1+@) =a (v} 1+v) fenbe yiBual-egnod | ¥oi
sor | vs | wo | e (. Lostimduoa folau iforaignor) @ 1440 =AW O | oy eppass wuor |
0rL [55%:] Sb'0 L~E (@) —Aﬂommwﬁﬂwcﬂwmﬂmw__ﬂ Ocﬁ%_z.w_“”w% ._v. |_H {g) 1+(a) <a (v} 1+(v) H_I uewy sejeasb ybBusi-agnoq | 2oL
Z'00L 869 SH'0 G~g “(uosyedwon tebisuy) ()5(v) } NO INdino sy ITm: => QQI [enba Jo uey) sse| L0}
2'001 86’9 SP0 G~E ‘(uosyedwoo rafisau) (g)>(v) 1 NO INdino suin) |_“ {g) = (v) H_l uey} sse7| 001
2'001 869 S0 G~¢ “(uosuedwon sebieur) (g)#(v) i NO Indino suung, Iva <> ?&I {enbaton | 66
2001 86’9 SY0 §~E “(vosueduwos saBisu) (el)=(y) it NO Indino suiny I_H @@=t enb3 | g6
2004 26'9 S0 G~g (ucsuedwoa tabiaul} {@)=z(y) § NO Indino sung |_Hnmv =< A<VH_| [enbe lo ue rejealn | /6
ool SL'9 S0 G~g “(uosuedwon 1eBiaty) (@)<(v} It NO indino swiny, Iﬁ (g < (v ”_I uBY} JBjRBID | 96
= [w0 |5 | e e e oo e {0~ @@ W} | st 55| s
pajnoaxe
winwixepy | wnwiupy 1oN pesnbe) .
sde)s Aewwng uopeluasadoy owEN NI dnosg
JO iBquNN NNd

(srl) paanbei swy uonnoexgy

(suononysu) uojound) suononisul weisbeiq Jeppe

User's manual - Functions 249

PART 3 PROGRAMMING INFORMATION

5. Programming Language

{sr) peanba) ey uonnoexg

Lvek | S02 w0 £ (@- E%Mm_‘ﬁﬂﬁ ﬂ_ﬂwu_“___m__:w:%mw“ @ - =AW= | e sl uiod m:rmm_%“ e
LyeL | g08 S0 € (@ E%uw&wﬁnwﬁu_ _M._azﬂ“___,ﬂ_._w:%ﬂw —{ (@ 1@ >4 (v)- 1+w) |- uey sss| Jujod Buieoyt | 912
612t | Lol 5v'0 € @ E%mﬂw”m_% __w_.uﬂ,ﬁ_.__ﬂ__:w:“”mw —{(@- 1+@) <> (v} 14w} |- tenbe jou juiod Buneoid | 512
e1gL | 2oL [svo € (g). E%Mﬁﬂ_ﬁw “,N__w“_ﬂ_mﬂ:w:wﬂwﬁ — (@ 1HE) =4) 1+w} - fenba yujod Bupsol4 | #12
£vel | S0 | SK0 € (@) _.+A.mh_w_moﬁm&wa_.ﬂﬁ Mﬁﬂﬁﬂaﬂ:ﬁﬂw (@ 1@ =<1 () 1+ |- | oy soreoss o _M_”__wwo““ Ehe
121 502 S0 £ @1 imﬁnm&wn_.ﬂﬁ Mﬁﬂﬁﬂ:ﬂ:ﬁﬂw |_” (@) 1+(@) <3 (¥)- 1+¥) H_l ueyy Jayeasb wod Buneold | z12
2004 86'0 G0 G~g .Eomﬁmﬁﬂ__ ﬂm%ﬂ_ﬂ_ aﬂumm_“.__.__“_._w Immu =>M ?MT [enbe Jo uey) sse| paubisun | 11
<00l 86'9 S¥°0 §~€ .ﬁ:om%mﬂw_m%"“_._ﬂm%_ﬁﬂ_ n_mww_mm_”w_._.._w. I._Hﬁmv >N ?cH_l uewy sse| paubisun | z11
zook | 869 | S0 | S~ .eomm%wﬁﬂ_h ”_m%_ﬁ,q___hn”m”ﬁ “ —fta) <n (v} enbe jou peubisun | L1t
zoor | 869 | svo 6~€ .Eommuwﬁwu_ _ﬁm%ﬁ_ aﬂ”_w_mﬁ“ @ =nw]- fenba paubisun | oLt
¢ oot 96'9 o §~¢ .A:Ommﬁam_w.%ﬂ__ﬂm%ﬁ_nﬂuw_ﬂ_% ._v. |_wmv =<n ?cu_l 10 ueyy Jojeelf umcw_ﬂ__wm 501
gool | 869 | sv0 | s~¢ .Eowﬁmﬁﬁﬂm%ﬁrﬂumﬂhw @ <nv]- e seyeasd pautisun [801 | g0
wnXely | wnwiu umﬁ”xo peinbel .
o0 w%%%:Z Aeuiwung uonejussasdey slEN 2037“_ dnoig

(suopongsuy uonodund) suonoruisul weibeiq 1eppe

250 PROSEC T3

5. Programming Language

PART 3 PROGRAMMING INFORMATION

X , i @) 1+(g) t1 ynsas ey} ser0)s pue (v} L+(v) U BIBP Ul
ge9L | sev | svo 9~€ | \yfuer-egnop aus Ul S1G NG 40 JSGUINY 8 SKMOD —{{@) osa ("} junoo g yibusl-sjgnod | ezt
. i . *(g) ur ynses ey} s21018 oo 1
16l | 252 | 0 | S~ |pue () u evep our uj sa NG Jo JeguInu sy SuN0D —{@os (v} wnoo g | 224
‘4340 011581 2} |[E 9198 pu ‘N o) (y)eisifial
18t | vOE Sv'0 p~E 10 511G U Jemo) sy} Aq pereoipul uonisod Jq oy} —{(a) (v) 030 (W)} apooaqd | 121
sjes ‘(@) Aq papeey siq (2 0Z|S JO 8|}) Bu) sexnEl
‘(guelsiBel
gz1zt | oz Sp0 g ul uosod §q NO Isouuaddn ay) 521018 UCHioRISUL |_”Am= {(u) oN3 ASH_i apoouq | 0Z1L
au} ‘(v) Aq pepeey s)|q . 621S JO 8|y §q Byl u|
- gr'e 510 I ‘Bay) Aueo ey sjasay |_“ 2484 H_l fAjeo jesey | 6LL
— gye TN} b ‘Bay Aueo aup sjeg .Iﬁ 0138 ”_l fiseoleg | gLl
440 0} 3 sj@s91 puB (v} Aq peyedipu) uoysod
0'Es N> 90 S~p oy} u 1g e} seye) uoonlisul sy H(gheysiBa IT& (u) 1841 ASH_I 10581 3| jqEL | £41
8y} Aq papesey 'SpIoM U Jo &fj) 1g 8y} woid .
"NO G} i 5188 pug () AQ pelenipu; uopeoo;
0'€s L1E 90 Gp 8U) Ul g 8y Sy Bl uofionJisul ou; ‘(BkersiBe ~{ (@) (u} 1381 (v) ”_I 198 J1q ajqel | 911
8y} Ag pepeay 'spIoM U O ajij 10 SuY) o
} . ‘(vheisifial ui g seioig
02 82’y Je)sifal B si () it
............... £'0 £reg fummmmmmmmmmm o mm o] —{ isd = saisiBaiooinap 1saiey | G11
. . 440 01 (v)eomep s1eg
v0e £9'9 :001nep B 8| (W))
i . {y)eisiBos u) 4444H s0I0i8
Oz | 82y se1siBa1 & 1 ()
.............. €0 B8 oo m e e — Wi3as }- 1a15|Bau/a01n8p 185 | 1L
. i ‘NO 01 (Y)eoinep sjes Buissanoid
yoe £5°9 aomap e s1{y) i Biap |eppadg
peInaaxe
wnuwpep | waunuy 10N peunbas on
sdals Arpwwng uoiBiuesealday swey dnoig
10 Joquunp NN
(srl) pesinbe: awy uolinoex3

(suononssu| uonoun4) suoponysu| weibeyq Jeppe

User’s manual - Functions 251

PART 3 PROGRAMMING INFORMATION

809

8Ty

(wawaJoap)iunod NMOQ:3d0

{JuatLalouNiuncd 4riNO

‘{molag

aes) (n) indus uoposies umop/dn ey) Jo ajBlS

&y 0} Buipiosor apBw 1 (JusLuapepUSLLIBISUL
Uojoep JUNOD BU} JO UOjO|as

o) “(ylejsiies islunod auy ul)i S8Jois pus NO
awoo sey (D) indu| Juncd ey} sewl) Jo Jequinu ey}
$1UN0D LooNAISY| 8yl ‘NO S) {3) indut eqeus ayi |

(v} 2

oann

lsjunod umop-dn

eyl

L3¢

\'g

{#Awond

sexe) jesed) ‘440 o) (v) samep sy sjasal il 'NO
s| {d} induj 1eses auy uaym INO 01 {v) eanep ay)
s1es uofanisy; suy) ‘NO €| (S) Indu) jes eu ustm

v} 4
Dd4s

doy-diid

ivl

1’604

894

SL°0

‘L Ag (g) Jo enjea au) SUBWLIED 0S|y

(0}

Ul)| $81018 pur ‘ISl Uy paysnd sem Yoiym ejep ey}
(v) Aq papeey SpIoMm U JO 8|qB) By} WoJj JNo S8y8L

—{f0) (@) (W) adod (v]]-

158 dod

gl

upe'l
+L'801

¥ol

SL0

'1 Aq (g) Jo enjea ay) sjusweldap
osiy ‘(D) uly se0ls pug (v) Aq papesy sprom
U §O ejqel oL 0} 1S ut peusnd ejep eup Ino sexel

{(0) — (8) (u) 1dod (vi}-

1se)dod

921

ugil
+6'v01

9’61

SL0

+
Aq {g) J0 enjeaA ayj sjuewaiou| pue (9} Aq pepesly
SPIOM U JO 818 a1 ojul {y) u| elep ey} seysnd

(o) — (@) (u) Hend (v}

ysng

g2

ugl
+y96

uL'g
+9Ed

SL'0

1+ u) sizmibau Buyoyew auy) Jo ssaippe Jejsibal
1SeMO] B} S10)S puB (D) U) SBYJIEW o Jequinu By}
s810)5 (V) Jo siuejuoa ey} Bujyoyew vrep 1o} (g)

Aq pepBay spiom u jo ejqe; Blep ybnoiyy seyoiess

—{{o) — (@) (u} HOS (V)]

youges Bl

rel

Buisseoosd

Blep jeiveds

wnwiepy

LAY

paInoexs
10N

5. Programming Language

(srl} pe4nbes swn uolNoex3

pesinbat
sdeys
10 Joquny

Aswwng

uoiejuesealdoly

awepN

‘ON
NN

dnoiny

(suoponaisu| uoflound) suononysu] welbeiq Jeppe

252 PROSEC T3

5. Programming Language

PART 3 PROGRAMMING INFORMATION

*(048 jo uoyemoe)(y) dels

- :.m:: :._.,___ S0 £ sojeAIoR puB () deis nJS ey wou) edels u ety syese: I_” (v) (W) 2148 u! ezIEmu 045 | 42
x6'0+82'6 \o! s
RonASk 8yl “NO 0} 440 uoi) peBueyd s) Induj usym
" "NO (v} eomep sun) ﬂa
. . 'Buny awms eyl U0 SUO)oNNSU| Indu)
- '8 £0 2z oausnbes dajs i SE0IABP 8L 440 _]ﬁ (v) H_I \ndino esusenbas deig | ovl
SLIN) UORONASY| 8YI “NO S| Indu) uBLm
-aouanbes W)
. . - deig ouo 'NO 81 ly) salkap ndu| esuenbas deig | s¥1L
o6 €0 2 esuduwioo aseyy | PUENOS! indu) ueym NO tndino sumny, I_H (v) ”_I ndul 1S
“{(eouenbos da)s jo
652 L02 S#0 £ uoBAo8) NO (v) swiny puB '(y) eajaep |ﬁ (v) (u) 2118 H_I ezyeut eouenbes dais | #rl
Aq papesy sadiAsp U e 440 swnp
- 0'ce £0 4 ‘el UONoSlap JOAC aLUj) UBDS aui sSpueix3 l_H uiom “_l 1osel 1ewp Gopyorem | ev1
— - - 1 -weaBoud dnuaw euy jo pus ey} selEdIpU| _I_H 1341 ”I pue weifosd ydnusn | 2yt
- 0'es g1'o I ‘weiBoid Wdnueju eyl o uclindaxe Sa|qes|qg I_H 1a H_I dnue aqesia| Lyt
- 0'ls S0 I ‘weiboid ydnulew ey jo uonnaaxe sajqeul I_H 13 H—I 1dnue sjgeuy | obt
- - S0 L “(1T¥H o1} uonoaxe wesboid ey sdoig I_H dols H_l doig | gg1
- SE't — 2 “(uu Jaquinu) SUNOIGNS ey} 0} @oUBIUS BU) Sslepapy| I (uu) 4ans ul_ Aue sugnoagnsg | 261
6 o6 S0 b A1X3N (Lx3N) dooj LXIN-HOS| EEL
‘u Aq epads sawg jo jequinu ay) _I_H ”T
Apereades | XIN OF HOL WOl LONDES a) SeInoex
- 869 | €0 2 H ubos - (8O} dooj 1XIN-HOH4 | 26+
. dwn|
- SE'L - ¢ [euoppUOS ay) 10} ucpBulsep dwn| ey seledIpL) _I_H (uu) e ”_I_ leqe) dunr'| sg1
.] "Uu Jequinu |aqe; . .
8L | S0 | EO) €~) ay o} jeqe sus o Aaesp scunl NO St indut oy i —{ v N awnr - dunf|euoppuco | 08t
- 86'0 — L ‘BUPNCINS Sy} JO pue oY) saledipu| I” 13H H_I_ uimal eunnoigng | 621
UL J@QWinU aulnoIgns 8L} IC} BURNOIGNS 104009
g ¥ i~ ; : . weiBoi
2vt S0 £0 €~Z oUl SifEo UOH3NSU 8} ‘N S1 Indul 8U} _I_” U N TIVD H_I_ [1eo supnoigng | az1 d
penoaxXe
WINLLIXERY | WINLLHURN 10N palnbe) on
sdals Auiung uopeuesaidey oieN dnougy
JO Jaquiny NNd

(srl) paxnbes awy uonnoex3

(suononnsuj uofoun4) suononiisu| weibeiq leppe

User's manual - Functions 253

PART 3 PROGRAMMING INFORMATION

5. Programming Language

S'e9l

8501

90

L~

{0) W synsal sy} selojs pue {g) jo enjea sy
Buish (v) jo sjuajuoo ey} o yu| seddn ue seyddy

 @«@nw 1

My saddny

09

-—

uonsuny

ugLL
+6'02

SL0

‘seapep Bupuodseoo eyl Uo 01U JJ0/NO o
salEs pue ‘() e|qe) 1o} enjea Bunes uoneanoeep
pue uoyeAice ey ym (g)relsifie: sy seredwod

— O -@ oW -

Jeguanbas wen

65

109
:Bunnoexy
LyS

"(0) eiget g s

01 1 sindino pue Jaquinu deis $|u o} Suipucdsenod
waped JIndiNo ey} dn SYOO} UCHDNASL

oy “(y)aiqe; wayed indino mep ey Guisn

*1+(g) Wi |l $810JS puB Jagquinu ders

oy} sepjoep uay) ‘(spremuc uZ+{y)) ajqe) Humes
anjEA WNo2 aiy yim (@) enjea Junco eyj sesedwo)

— W)~ @ Wnnsaw -

saouanbas wniq

851

02051

St'0

*(g) unm Buneis spiom g ey} u| lInsal sy}
$810]S PUR ‘@) puR 8jep Jusung ey wol) ‘(y) Aq
papest| ejep aW|) PUB S1Bp JO SPIOM § 31} S108NGNS

—{ @sawnw -

uoprledo Jepuee)

GGk

0958

£0

(Bumes
Bl puw 8)ep) |S7 JEPURIRY BUY) Ul WBY] S|es pue
(v)ieisiGar ey g popeey BIEP JO SPICM O 8Y) SeYBL

~{ anotw -

lepuaen 198

Gl

L42°]

92t

g0

"ya1e] SNYRIS @y} jO Blals aY) S|gaues)

— m.iw T+

19581 Uoje] SNEIS

€51

096}

6

S0

“BoIB Y08 8y} Ul Way) selojs pue sswnwesbord
o) 4q 193 (26 xew)sia)s|Gaussesinep syl sexel

— sus |-

19§ yo)8| smels

asl

UES'EEHE

UER'EHO9E

£~¢

-Aejos Jojounuug eyy wos pue (0SENNJ)
uononnsul Aejdsip oysoubeip eyy Aq pepiooas
1s] 8poo Jolle eyt wol) (y)epod 10140 SU) S9SEIg

—{ Wuvia -

1asa: Avjds|p onsoubieg

(3:18

598

£ve

SP'0

‘ganiaap [rleydped ey

uo paJoljuoLl 8q ueo (g) Aq pepesy sejqe) Jajs|Bel
ey Uy papioae) (s1sjoriByd Z| xew) sefesselu
Joue ey “Aejed Jojgounuue Hupuodsanoo

eyl NO swiny pue Yeis|bel [eoeds oyl

W () Ag perenipul epo2 10118 Sy} SPI0DaI UONONSUY
ay) 'NO 01 440 woyy pebusya sey indu) uaym

—{ @wovia }-

Aejdsip opsoubeig

051

Svd

WNLunREy

wnunu

peInoBxe
10N

(sr) pa4inbey ety uonndex3

peanbal
sdes
§O J8qWNN

Arwwung

uopejuesaldoy

aluen

oN
NN

dnoig

(suononJsu] uoyound) suononiisu| weibelq seppen

254 PROSEC T3

5. Programming Language

PART 3 PROGRAMMING INFORMATION

‘00001 £q enfea euseo sy Suididiyn

o'¥51 9ze S0 g~ | pue oL Aq (v} j0 enjen oyy Buippp Aq peusiqo {eeifiop) iﬁ {8) 500 (v} H_vu {sO0)uonouny auisol | €44
ajbuw sy Supjm Ag peureiio enjea ey (g) u| sei0lg
‘00001 A9 enpea eus s Bulkidinw)
2251 1) S0 g~g | puaqol Aq (v} jo enjen sy} Buipip Aq peureiqo (ssibep) I_H (@) NIS (v) H_I (NIS) uonoun sUIS | 27
8(6ue 8y} Bupyel Aq pauelqo enjea el (g) ut se1018
(1) w) ser0)S
g'geoL | 4092 90 v pue ‘(g) Yym Supeis sieewried ey) Buisn {y) jo anjea I_H (D) « (@) zald (W) ”_l Qid erenbs uonemed | LLE
oY) 10§ LONBINIFED (]| SIBNbS UCHBIAGD 8Uj ING SBLIBD
. | . () up 1§ seiois pue *{g) yim Bujpe)s sisjewerad
g'560L | 9088 | 90 7| o Aq () 1o oieh ous 0} LONEINIIED Clkd 6U) 0 SLIED —{ © ~@adw - aid | oz
) . | (0} U1 sesols pue ‘{g) uim Buipne)s siejawered
€992 oer go i~¥ a1 Aq {y) Jo anfea oy} Joj uonouny dwel By SepRILEL) lm (0) « (8) dvH (v) H_I uogoun; dwey | 691
“9)- 140}
£gge | €€ 90 L~¥ U inses ey} seiols pue (g} 1+(g) o) Jueisuco ribel) —{ @~ @ain - feiBaiu| | 891
el wo () Jo anjea oyl Joj jesfisiul ay sejenoie
" ' . (@) ut) sai0)s puB ‘(v)- 1-Hy))
iviz | 288 Spo 9~€ 15 BUBI-BIGAOP B J0 1001 64enbs 8Uy SpuLY —{ @ a1+ 1001 osenbg | 291
. ; (0) Ul siois pue “(y) Jo Slueuoo ay) 1o} (g}
9paL | L 90 £~V | fq pereomu pueq pEep el SONB LoIyM SN(eA Su} SPULY — O (@ aa v pueq peaq | 991 |
*(9) u1y seios pue 'wewntise sy se (v} jo siejucd
urhiiest | veogssae | 520 LG BU) SBYBJ UM BNYEA UCjloUN; su) spuy ‘(a) Aq papesy I_” (0) « (g} (v) ©d (v) H_I Joneseueb uoyoung | S91
siopewened U xz ay) Aq paulep uonouny au Buisn :
. \ . (@) ur u 99s018 pua ‘(v) Aq papesy
uzL+02Z| 9'82 20 14 0/ B3 PION-U 0Uj i0} OrieA aBRIBAR BU} SSIEINIED —H{ @3 - enpen ebeisay | 9L
-1+(g]) Ul BnjeA LINWIUIW L) Ui Jetujod By} $10i6
usLtgEs| €02 90 4 PUB "(y) U} BNjeA LINWILIL Y} SBIOIS ‘SR[BA LN lﬁ () (u) NIN () Ql enjea wnww | €9t
ay) 10} {y) Aq papesy e|qe] Bjep PIOM-U By} SOYNBSS
*1+{g) ul anjaA wnwixsw sY) yum Joiod ey salols
woLeesl £02 90 ¥ PUB ‘(@) Ul 8NfBA WNWNEW BU} SSI0)S 'ONIBA WUNWINBW I_H {g) (u) xviN (V) H_l snjen Wwnwixep | zgi
o 10} () Ag papeay e|qe) BIED pIOM-U B} SSIRES
. . . - {0} up s|nsa) ay) seu0)s pus ‘(@) Jo enea Wil JOMo uonaun
S'E9lL 85°01L 90 L~t o Busn) 40 SHBIO0 84} 0} Ll 1aw0] 8 Saddy I_” (O — (@MW ul iy 71 LeL found
. painoaxe
WNWIXeRy | winwiuiy 10N paunbe on
sdois Arewwng uonejuesaidey aleN N4 dnoin
JO JaguinyN

(srl) pasnbel swp uoRNIexg

(suononiisu| uojiound) suononiisu| weibelq seppe

User's manual - Functions 255

PART 3 PROGRAMMING INFORMATION

5. Programming Language

@y ul
9'ag1l | €280 Sv'0 S~¢ | ynsar sy) sai0is pue 001 Aq B seydinu) jo anfea .I_H @ oo H—I wyuebo | 641
8INj0SqE 8y} jo WYIE0| UCWILLOD aY) SBIBINMED
- . . ~ (@1 +Hg) w3 sai0)s pue (y) Jo
Gelzh | vveL sv'o 5~€ aN[EA 2IN[OSAE 243 JO 0001/} 10 fequauodxe ey spuld |_.,. @ 1+(a) dx3 (v) H_l uopoun [efusucdx3 | 821
. . . o "{g) u} 1 seiois uay) ‘001 Ag anjea jusbue) (.Nvl)
HieslL | vE0E | S0 §~€ are sy} seydiinu ‘00004 AQ () Jo enfeA 8yl SBpING — @nvw) |- wonoun; jusBuz oy | £
. i \ - *(g) U1 s8I04S UsY) ‘001 AQ eNnjBA SWISCD (,.500)
Loyl | 9'SE s¥'0 §~¢ o18 ey} saydinui ‘00001 Aq () JO anjeA sy} sapiag —{ @sooviv) }- woroun euisoo oxy | O+
“(g) uI § $910)8 usy) ‘0oL Aq BnjEA BUIS
bevt | 6¥E | SO s~€ ose 8y} mm__a_._m_w_ .&SF hn @;s Tien 641 £oPG — @nisy V) |- (,-NIS) Uonouny suis o1y | G/}
00001 Ac snjea ywabuey sy BuAidiinw pue 0oL
¥'891 509 S0 S~E | Aq (v) jo erwea ey) Buipivp Aq paureiqo (eaibep)eibue I._“ {8 NvL {v) ”_l (V1) uonoBuny jusbuel | +21 uooun
ay} Buye) Aq paureiqe enjea aul (g) Ul SI0IS b
Ginoexe
Winupey | wnwijuiy P 10N pesnbai o
sdajs Arewwing uanejueseidey SuwEN N1 dnoig
Jo Isqwiny NN4

(srl} paJnbes awy uolnoax3

(suononisu) uoiound) suononisu) weibeiq 1eppe

256 PROSEC T3

5. Programming Language

PART 3 PROGRAMMING INFORMATION

(@) 1+@) Ut {v) - 1+Y)

. . . , . B
veL | 94 | svo € Jo Erzp 1g0d Buneoy) jo evep o[sIeAU! LUEIE olf SEI0IS ~{ (&) 1+(8) D3NG (v} 1+(v)] | uoisseau) ubis uiod Buneatd | 20z
. . . “(8) 14+(@) Ut i) 1Hy) . e anjea
el el sv'0 € 10 BIEp Wiod BunBoj) JO 8njeA BINIOSQE BU} SBINS — @ 1@ sava () 1Y) |- ewmiosqe uiod Buneoys | 900
. . . *(g) 1+(g) u 1 salcls pue ejep Jebaju) YiBual-aignop e s
szvt | 908 $v'0 £ o1 (7). L+{) 10 E1ep 101od BUNEO) 614 SHiBAUCH ~[@ 1@xd W 1y - uotsIeAU0D Juiod pexid | 502
. . . (g} 1+(g) w) sesois pue ejep uiod Buieoy L L+
648 662 S¥'0 §~€ oW (). 1 +{y) 10 JeB9IUr YIBLIBL-51GNOP S} SHBAUCG l_” 8) . 1+(a) 114 () 1 +w) ul uojsieauoo Jred Buneoid | $0zZ
. . . () 1 +{g) ui } seic)s pue L L+ UDISIDqUOY
geaL | €2 | S0 | 9 1 pep qog o (v)- 1+y) Ul erep Aleug au) suauo) —L @ 1+E asaa () 1+ |- qos wbuer-egneg | "
. . . {g) ul y sauo)s
zel | &0 Sv0 §~€ DU K120 008 GaU1 () U B98P A1ouiq alp Siesuon — @acatv) }- uoisienuco aog | 061
. . . (@) L+(g) u) 1 SBI0IS pue Blep Aeulg) . . uoIs1aquos
osg | zeL | svo 9~E | 1 (w)- 1 +) 1 B19P (0F UBUBI-61aNop SL SHaA0D — @ 1+@) Niaa (v) 1+y) - Areuiq yBusy-agnog | 58¢
. . . " (@) Uty saIols
vl 9'se S¥'0 G~E pUE BEp ATEUIq OIu1 () U1 18D Q2 a4 SuenIon I_H (g nig {w) “T uosieauco Aisuig | 88l
‘(@) AQ pepesay ugjieso] au) u| ynsed 8u) SelNs
UEEIHYEE | USEHEEL | SPO OL~g *8p0o |IDSY OlUf WAy $19AU0Y pue (YY) A pajeajpul I_H (@) osv (v) H_I UOISIBAU0D |IOSY | 981
(sieorIeyR 9] Winwsew)souawnueyd|e ay) seye|
Len | ere | svo §~¢ () u saios —{l@o3asstiv - apooap uawbes-, | gg|
pue ‘epod Juawbes-2 ojui {y) Jo slIq ¥ 8L SHBAU0)
. - " ~ {g) . 1+(g) u1 sal0ls pue 'ejep . Buor
¥oeL ag'8 St'0 G~E BUBI-6[GNOD 01! {y) Ui BB PAUIBIS U} SHEAUOD !_H (g). 1+(g) ma (v) H_l. uoisieauod Whus-eiqnog | +a1
. . . Juswajdwod
gist | boL | st 9~€ | “(g).1+(@) Ul (v)- 1+(v) J0 JuSWAIdWOD SZ B SBIOS ~ @ 1+@ paNa) 1+ - 52 ubue-aignog | £8+
FA AL ev'L] S~ (@) ul () Jo 1wewWe|dwioo 5,2 a1} SIS I_H (9) 93N (v} ul awsdwon s2 | 28|
anjeA
g5t | vou Sv'0 9~g (@) 1+a) w (w)- L+(y) 0 enjea ajnjosqe sy saloig —{ (@) 1+{g) savd (v} 1+(v) 1+ ainjosqe whuaj-aqnog | 84
6Pl 598 S0 S5~ (@) u (v} jo anjen einjosqe ey satolg Ih {g) sav (v) H_I 8nieA eiNosay | 08L | ieranuon
paindexa
winwpaey | wnwupy 1N peynbes .
sdeis Aewwng uoneuaseidey sueN N dnoig
10 JogquIny NN4

(srl) peanbai sy uolnoex3

(suononaisu| uonoun4) suononisu| welbeiq Jjsppe

User’s manual - Functions 257

'PART 3 PROGRAMMING INFORMATION

5. Programming Language

(s#l) pasnbal awn uoynoexy

“Insa) uoherado
oy 0) Buipsodoe sabueyd Bey Auea eyl (D). 1+D) ; f18o Yyum uonoengns
6'22¢ 25k 90 6~ Ul }nsal e S0101S pug ‘god ui {y) . L+y) wiol I_”AOV. ++(3)—(@)- 1+(8) 0-8a (v)- ??.ﬁl aog yibual-aiqnog €0e
Bey) Aued syl jo siuaiued auy snid (@) - L+(@) sioeagng
‘Jinses uoneado au 0} -
. . . Buipiogoe sabueys Bep Aueds axf (D). LHO) v insal . !
voz2e L2 90 6~v aLy salojs pue 'qog ui {y). L+()ol ‘Bey Aued sy I_HAO? L+{O)—(8)- 1-H(@) 3+8a (V) _.+A$H—I uonppe gog wbuej-sjgnog gog
Jo sweluo2 ey) snid (g). 1+gl) o siualuo ay; SppY
“ynsal uorelado ay) o) Buipioooe sabueyd
gele | 09 90 L~y | BeyAueo oyl () wiinses s sewoss pue ‘aog ul (v) —{ @08 | | Aoy uogoengns aod | Loz
wosy Beyy Aied ay jo spuajuoa ay) snid (g) spoeagng
‘iinsal uoyelado ey ©) Buipiosor sabueyo
SELE | 509 90 L~ Bei Aueo ay) “(0) uj ynsas ey) sal0ls pue 'qog ~{ O-@oa } Aise0 yim uoippe aod | 002
u) {) o1 Gey) Aues sy jo siusiuoo ay) snid {g) sppy
Z+0) - £+(3) w repurews) ayj pue (3)- 1+(D)
oZEr | 9ee 90 6~F uuagonb sy seio)s pue ‘gog ul {g)- 1+(a) [~ (0} 1HO)—(8) L +@) /8Q (v} 1H{v) |- | uosinp goa wlbuer-siqeq | 661
Jo sjusiuco ey Aq (v)- L+(v) jo sjuajuod sy sepiad
{(0)-1+HD) - 2+n) - e+0) uoneadinL
zeay | €8L2 g0 6~¥ U ynsa. ay) sauols pue ‘goa u (g} 1 +Hg) lﬁ {2) 1+(D) () 1+(3) «8a {¥)- L +(v) ul Susr-signoq | 864
asg wbug|-eiqnogd
10 sjUBjU09 8yl AG (v) L+(y) JO SIS0 sy} salldninw
0) 1HD) uopoBAIGNS
E6lE | 91l 90 6~ Ul ysa) L) Selols pue 'GOg Ui (v} 1+(¥) 1o | (0)- 1+(0)(8)- 1+(@) -aa (v} 1+(v) - Busl-eignoq | L6+
Q24 wmbus-gignog
sjusiuod au} Wwolj (g) - L+{g) Jo SiuauoD Ayt SPeIgng
reee | e 90 gy | Q) 1+(0) Ulynses oy salcls pue ‘gog U {y): LHY) — @) 1+0)—(@)- 1H(@) +8a (V) 1+(v)]~ |uowppe goa wbuer-enaa | 961
10 sjuajuco ay) 0} {g}- |-+(g) JO SWBWOD By} SPRY
o) u
8052 ¥'z8 90 I~ | 1apurewsas sy} pug (D) u) Jenonb ey saiols pue ‘qogd |_H {(0){(3) /9 (v} ”_l uosIvp aod | g6l
u (g) 10 sjuejuod ayt Ag {y) Jo S)UsJU0D By SapMI]
. \ . (0). L+{D) ul Hnsal aY) $9.10]5 pud
Vig | 920t 90 L~b ‘308 ul eyebioy (g) pue (v) SiualLiod ay) sadmny — @ 1+0)-@alv) }- uoyed|duInW QOd | +61
. . . - () Ul |INsas ay] S8101s puB 'gog Ut -
bale es o0 i~ () 10 susuoo eyl woy (a) jo siuajuod ay) slenqng |_H (O)(a)-a) H_l HORIBNGNS Q08 | 61
. . . N (D) w unsas ey Sel0is pue '(g) uopeiado
bele A 9o by pue {y) |0 SJuaL0a By} JO LCIIPPE (1D INC selle) !ﬁ (0)ta) +a (v) HT UoKppe 408 | 261 ang
pajnoaxe
wnwxep | wownuy 10N penbe) o
sdojs Areuwng uonguesaidsy slweN M dnoin
10 JaquinN

(suononyisu| Uoiloung) suoionssy| weibeiqg sappe

258 PROSEC T3

5. Programming Language

) . . (@) - 1+(g) U1 i s21015 puB ‘(v)- L Hy)) . 5
6988 | 00eP S¥'0 g 10 E18p ui0d BuYEO]) 31) J0f ABLE} 0IE B} SpULY I_H (g} 1+E) Ny Ly (W) 1Y) ul (,-NVL) ustiug) oe juiod Buneors | 622
0665 1'6e Sv0 ¢ {@). 1+(g) W)l saI0Is pUE (). 1 HY) I._H (g} 1+8) s0ovd (v} 1+{v) H_l (,.500) 2auisos e ujod Suneo] | 822
J0 e1ep Juod Buneoy ay) Joj sUISCD D1 8y} Spuly
: "Gg S0 e (8} 1+(@) ut 1 sesls pue ‘(y). L+{y) 0+ St NIS) auis ore wiod Bueo
9695 | LG 10 612 Wwiod BURED} o) 0} AU o1 oUp SpULY —{ @1+ NSvd () 1+w) |- | (i) 14 | L22
gz08t | ossz | svo € (8)- 1H@) Ui se10is pue “(y). L+(y) — @ 1+@INVLA () 1HY)]~ | () webus uiod Bugeors | 922
jo ejep witod Buiieoy ayy 10y Jusbiuey ey spui4
) . . (8) - 1+(g) ut 1 sauols pue ‘(y). L +(y) L L d6
€52 | 9'€19 S0 £ 4o e1ep Juiod BUNE0] 61 10} SUISOD B SpUL |_H (@) L+(a@) s00d (v)- 1+{(v) H_| {5G0) auisod yuiod Buneold | szz
' . . (@) 1:+(g) uy u saiois pue
OML | BEEE | SO € ') 1+ Jo e1ep 1iod BLnEOy SU) 10} BUIS B SpUI —{ @ 1@ NS (v)1+y) - (Nis} ouss juiod Bupeot | v22
"(0)-1+(0) Ul 1 801018 pue *(g) - 1 +(g) yim Burpe)s
gose | o8y 90 v sizjaeied Guisn {y) . 1+(y) wiep Julod Buneoy ey I_H (0} 1)) 1+(a} 201dd (V) 1H{v) ul (id esenbs uoypirep Juied Buseold | €22
10} UONBINDIED Qg 21BNbS UORBIASP By IN0 SSLIBD)
(). 1+(D) ut v s81048 pue (g)- L +{g)
9298 | O0EP 90 4 Ui Buiiers siajawered Buisn (v)- L+(v) ewep |ﬁ (D). 1+(D)e—(g) - 1 +(g) Aldd (%) L +{¥) H_l aid od Bugeord | zz2
wiod Buneoy ayi 1o} uojenafea qrd Y o sawen
. . . (@) 1+(8) ul 1 sei01s pue (v} L+{v) .
g6ve | 6882 G40) 212 ui0d BUNEOY 61 J0 100) B1ENbS By SPU lﬁ (g)-1+(@) 144 (v} 1 +{v) H_| 1004 asenbs yuied Bupeold | 122
(). 1+0)
o2t | sop 90 v Ut }t S2I0}S PUE ‘() - kH) 40 (@)- 1+(8) Aq pued | (5). 1+(0)—(g)- 1+(@) 8ad (v} ++{v) |- | pueq pesp juiod Bunzold | ozz
peap ay) samb yom erep Juied Bueol} ay) spul
{0) 1+(0)
oL 6E2 90 14 ul Jjnsas auy) 581038 pUE (@) 1+{g) Buisn (v). | +{y) l_” (2)- L+2)+(@) - L+(8) 17 (W) LH) H_I 1wyl semo) jutod Buneoid | 612
ejep juiod Buiteoy ey o} Jus samo| ey seyddy
(0)-1+(0)
bSit 9te g0 4 u yinsa) ay) seois pue '(g). |+{@) Busn (v)- 1+(v) [—] () 1+(0)—()- 1+(8) N4 (v)- L+{¥) |~ nuin saddn uied Suneold | grg | SUORIUNY
erep wiod Bueoy ayy oy ww Jaddn ayy saddy |lesy
peindaxe
wnwxeps | wnwug 1N painbel o
sdais Aewwng uojejuasaiday lwep nng| 9noio
o Jaquiny

(srf) paiinbai ewp uopnosexgy

PART 3 PROGRAMMING INFORMATION

(suoponuisu| uojound) suoonisu| wesbelq Joppe

User's manual - Functions 259

PART 3 PROGRAMMING INFORMATION

5. Programming Language

“ginpow (eivads ay) ur Arowalu

o |USERBLL 90 ~¥ | sys o1 vase sojsibol Josn au) Jo SIUBIUOD U SIBjSLRIL I_wov — (@) LM (W] | ewm eiep e;npow j8sds | 82
_ . . " "BSIE JBSN 8y} 0) ajnpoll [enads
ugeHziLl 80 v ay) U} Alowisw 8t} L0J 125U BIER INO SBLIED Imov «(gavay ?.MT peas 212p Binpow! |B100dS | 262
(0} 19181621 ay) Aq panoads Ainenpul uolieuRSaD JajsuUel)
1eBs8) 2% 90 v alg) o} {yhaisiBal sy AQ paiyoads Anauipul 83IR0s —[(0) < (@) ¥ v - 18)sue)) Bjep pepuedx3 | 953
Uo yuapuaded 18jsuel) sy} wouj {) 8ZIS 0 I0iq PIOM ALl SiajsuRL
‘gjnpouw 0/t Buipuedsalics ayy oywiol) elep
— furersoz| svo € 10 IndinoAndul 1no Sepseo uoRoNIjsL ayy ‘(y)aisibes {wwon}- onwera|sez| U
indinoandut ayy Ag papesy siaisibal spiom u ayj 104 Andu
. . . {g)- 1+(g) 11 1 seiois pue {y) - L +{v) J0 2lep _
6'6001 | 908 Sr'0 € Jurod BuiEot) ay) 10 WLIEBO] LUOWLIOD 8U) SBIENIED ~{ (@) 1+@ Do (W 1+ |- wyreliol uiod Buneotd | 1£Z
- . . “(g) 1+(@) w salois pue (v} L+(y) . niauodxe 1wiod Bunao suojIouNy
gLl 8'8.9 o € 1o e1ep juod Buneo)) au Jo enueucdxe syi spuld I_“ (8) 1+(8) dX34 (v) - 1+v) “T 1= w Heold | oeg {eey
panoexe
Wnwixepy [wnwuiy 1oN peanbes o
sdajs Arewuwing uonejusseidey ateN N 37“_ dnoig
jo Jequiny

{srl} peainbau ey UOINDEX3

(suononysu) uogoun4) suoyonysuy weibeiq Jeppen

260 prROSEC T3

5. Programming Language

PART 3 PROGRAMMING INFORMATION

‘poued
{uogor 195 au} §1000x pug “1sjsiBas Jawr aup 5| (1) 1equinu)
. . dels B 5] 9585 'SISBQ BUO-0}-8UC B U0 puodselioo WA dels uwe
88°04 88 Buipnpxe) |~ yoym wieiboid uonow suBIUCY NGO of (v) sonep W 15 uLElY
§ uLee U} s1os ‘poped 1S By ullim apeaLL Uaeq jou
SBY UO[SUBI} L))i puB ‘poyiad a0 By SIONUON $858
'poued 185 ayj 5| Xxx¥x pue ‘191s]es
(uopoe | touI eul S} (1) ‘tequinu dejs auy) 5| s885 °SISBQ BUO
. . i -0}-8u0 B UC puodseiiod yojum weiSoid uonoe sy XXXX days wem
£5'6 €89 Buypnjoxe} F ‘pesdeje sey pouad 188 BU} [JUN UCIISUEI) BU) INO () '
v 18D 10U $20D UONOTUISU| SIU '8nJ) S80S Uopuos
uopysuen Bupesed Aepeipowwy eu i uang 5558
“1HOUINU 0108 8] 51 LWL puB Jadgunu
06'6 te [de)s ey 51558s "wwuw £q pejacipul webod dajs ai0ep
0108t BYE 0} $158] SUO-0}-3U0 B UC SPUCASSII0D M_mﬁm_._
‘Jequinu da)s Jenu| 8L S| SSSS "N} SOWCD
. | uonipues uolljsues Buipedsaid Aj@ieIpatuwl eyl §588 ders pu
s\ 090 ¢ uaym des jemu Supuodsanco ay) o} Bujssesoud 18 pu3
suiniay "weiboid D48 Ul Jo pua sy} seledlpu)
{uonoe Jequinu deys ay) si SSSS d
ooe 0£'0 Buipnioxe) | 'siseq auc-ol-sud B Uo puodselco yojum wesboid 5988 215
L uOHoR SUIBJUCD } "|OHU0D JO Jun aifiuis syl SISyl
{uope “aquinu das ay) s} S555 8158
. . : ! d
88'L eg'e mc_.am_oxa SUD-0}-0UO B UO puodsenon yoiym welboid uoyoe . 18 el dois
sugtiod pus weiBoid D48 sul JO RIS e sEJPY| 048
-(uoneayor N4S) deis
:-ﬁu NI £o'g v [Bijiu By} SjeA0E pue ‘weiBold D4g Buipesdons ”_Evcc azyemul D48
&'0HEr'SE 85U} Jo Sda)s LULU By} SBJBANOBU) LORINJISU] 8u) v szEmUL
‘NO 01 340 woyy pabueyo sey {y) aonap syl usum XXN : ou_ m
adels Areunung uopeluasaiday aweN NN dnoig
10 JPqunn
{srl) pasnbeo) aw vonnIexy

SUOIONISU| D4S

User’s manual - Functions 261

PART 3 PROGRAMMING INFORMATION

@_

(srl) pesnbas swn uonnoexg

0e'0 080 ! ‘wesBoud 0i0BW jo LelS SejeDIpY| fijue oioepy
FHI
. . *dumnt 945 auy woyy uopeuysap dwnl ayy Jo
€0 ev's ¢ "PuS D4 SYI WO UOHBUNSSP WINjal aU Se1epy| e [#q81 048
leqen]
(uonpuod "SISEQ BUO
£cg 080 Bupnioxs) | -0}-8u0 e LO pUOSENCD YDIYM LORIPUCD UCHISUER) pue cioBp
4 sulgjuon welboud oloew ayy O pUS Byl SajedU|
(uonpuoo ‘gisieq AUQ-0}-8U0
- B Uo puodssniod yojym uonipuod dwnl surepo)
ee 50 mc_u”._sa ‘M) SAUIOD UOHIPUOD BY} UBYM (||| AG PajEIIPU) ——> lite dwnp 548
jeqe; &4) 0} sdwing "da)s paysep o) dwn| s31eMU|
(uonipuos *51SBQ BUC-0}-8U0 B U0 puodsanoo N e
. . ’ OJLM LOIPUOD UOIISURI) SUIEJLOD '8Nk SBW02 e u
€59 0E'0 mc_uw_oxov UOHIPLIOD UOINSURE 8Y USUM |ji| AQ DalEoIpU) [age| pu3 04
oy o sdwnp “wesbold D4S o pUd 8L} SajEd8pU|
(uoigpuos ‘§i1$8q aud-0}-auo
29'S g1 0 ac_w_.d_oxm_ £ U0 puodselion Yojym uoiipuod uoljisuel) suleion -4 UOHISUBI).
. i ‘sdajs usamad UoNISURY} JOj UOWPUOD 8L} SBIEJIPU|
uopIsuBI|
BMIaY aAjjoeu| ponba;
‘0
sdais Arewwng uoeiueseiday sweN z:ﬂ_ dnoug
10 JequInN

5. Programming Language

suononisy] D4S

262 PROSECT3

5. Programming Language

(1) eoualbiianuon

UEB'THEE'T 0E'c] seauenbes snosuByNWIS
. .) < (1) eousBigauas)
usy'orecy 0g2 sesuenbaes snosueynUAS
. . (youesg (1) ssuebisry
SL'0 510 au LIyIs seouanbes sNosUeNULS
m__.m«Oﬂ P\ e
fanpIApUl
pue ‘sdais _H_H_
610 10 ‘SucsLI ' ; ; (1)) eoueBieng
Bupnjox3)] ! _\r.mH_ saouanbes snosuelnug
ngs
. Mﬁ_ﬂ: mm_‘_m i {1) eousbilang
Sro sko i — | saouanbas snosuBINUWIS saguanbas
g ‘sdays paloauLIes au) jje SeeAmoY snosuB)NWIS
. souablaauon
£ SL'o] —1 uonoejes asusnbes
{uoueig _‘wI_H._ _HAT—vI_ mw_ (i) eauabrenq
L1'S 0e0 81 ulum 1 I 1 T uonoajes asuenbeg
sjesp ! ! !
[enpiapul
pue ‘sdejs
'SUolSUBI T {n) eousbisng
S¥'9 0e'0 Bupnjox3) _ uoloales aouanbeg
unoo
youelq
oy} s u (Aroud yay) T ()) ecuabiang
Sr'e 0D 8} SAWICY UOIIPUOD LIoHISUR 8L} yaum Joj dals uonoslas eouenbeg uojaees
1-uxz| eur selernoe ‘sdeis pajoauLod [eleass Buoue Woly eouanbag
Q>=D< QBSNC— ﬂmh_zcmh 0
sdajs Aewwng uoneussalday eluweN z:zn_ dnoin
JO JeqQuunN

(sHl) paitnbal swn uoHNGaX3

PART 3 PROGRAMMING INFORMATION

suononiisu] D4S

User's manual - Functions 263

Index

A

ANNUNCIALOT TEIAY ...ttt e e e e e e e b e e e e e e e s e sbabaeeeeeeeeeaans 131,170,171,172
Application program (USEI PrOGIaIM)coeieeeriererieeeriieeestieesbeeesebe e sseeesbeeesireessereesneas 31,33,141,146
ACHON Program (SFC)......uuii it 230
ACHON SEEP (SFC) it 229
AULOMALIC [/O AlIOCALION ...t e e e s e e et s e e e e s e eeebbaaa s 23,89,199
AUXIIAIY EVICE (R) ceeiieiiiie ittt bbbt 158,160
AUXIlIArY regiSTEr (RW)..... ittt st 158,160
B

Batch INpUL/OULPUL PrOCESSINGveeiiiieiiiieitiee ettt bbb 83,85
BCD (Binary Coded DeCIMAl)........ccoiuiiiiiiiiiiiiiiiee ettt 184

Bit pattern check fFUNCHIONooiiiiii e 132,169
BIOCK ...t aeas 142,146
Breakpoint function (DEBUG MOUE)cooiuriiiiiiiiiiie ittt 125

c

Clock-calendar FUNCLIONocuiiiiiiiiie bbb e e 168
(@00T1 011 4111 55 141,155
Computer INK PArAMELEISc.eiiiiiiiiiie ittt sebe e eene e 144
CONTANT SCAN.......oiviiiiiiie e e s s e e e e e s s 84
COUNLET AEVICE (C.) woiiiiiiiiitiee ittt bbbt se e sbb e s be e e seb e e snne e 158,161
(0¥ {01 (T (=T o 1 (=T o (O SRR U RPN 158,161
Cyclic MOde (SUD-PIOGIAIM) ...oueiiiiiiiiiieeeiee ettt sbb e snee e 93,98,149,173
D

(DL F= W[T1(F= (= ([o TR 75,82
D1t B T o 1S3 (=] g () PSPPSR PRSP 158,161
DEBUG MO ...ttt ittt ettt b ettt ettt st e sa e ebb e e st e e e nbb e e e nbae e s nneas 77,124
[D7=To10To oo] 4] 10> o Lo S PRSI 79,80
DY o P ST PP PP RPN 156
Diagnostics display fUNCHIONcooiiieiiiiiiiie et 131,170
Do 1ae SIS To | o T= i o] o B ST OU PP PP 193

Direct INPUt / OULPUL PrOCESSINGeeiveeeriteieitiee ettt ettt ettt sbr e sb e sebe e neae e neas 86

DiIr€Ct INPUL AEVICE (1) .+vee ittt ettt st nee e 158,160
DireCt INPUL rEGISTET (IW)....eeeieiiei ettt 158,160
DireCt OUIPUL AEVICE (O) ...veiiiiiiiiiiiiiiiie ettt ettt bb et naa e e 158,160
Direct oUtPUL regiSEr (OW)eiiiiiiiiiee ettt 158,160
DOUDIE 1ENGIN BCDeiiiiiieiiii ettt bbbt sab e nan e 187
DoUDIE 1ENGEN INLEGET ..ottt neas 186

264

Index

E

Edged MOdIfICAtIONooiiiiiiiiiie s 219
EEPROM ... e e e 71,102,139
o IS (=T o (5] O I PP OT PP 226

ERROR MOUE.....itiiiiiiecce et e e e e e e e e e e e e s s b reeeeeeas 77,104
ALY a1 T3 (] Y/ PR 108
Execution time measurement fUNCHIONoociiiiiiii e 116
EXpanded fil@ FEQISTENui it 103,139

F

FHIE TEOISIET () eeieiieiii ittt ettt e neb e e neas 158,162
FIOAtiNG POINT QALAveeeiieie ittt b e 188

[T T= U] o T o7= T o SRR 83,95

FOICE TUNCLIONouiiiicccc e e e e e e e e e e e e s s eaab e e e e e s 123

FOrce RUN COMMANG.......ooiieiiiiiiiie ittt e e et et s e e e e s e e e et s s s e e s s e eatbb e e eeens 18,78
FUNCHON DIOCK.uiiiiiiicii i e e e e e e e e e e s s raeeee s 216
FUNCHON INSIIUCTION. ...ttt e e e e e s et e e e e e e e s s eaabraeeeeeas 219
Functional SPECIfICALIONSiiiiiiiiiiii e 72

H

HALT (operation mode SWILCH)ccocuiiiiiiiiiic e 18,78

[1Y I I o0 11 1 =1 T [18,78

[VA I I 0 To Lo [PR 77

[(@] 2y ¢ o o [SRR 77

HOt restart fUNCHION ... e e e e 113

I

(e LTS o =1 1T o PR 85,201

T @ IR=11 [0 To%= 1 1 o] o R 23,198
J{@X=11loToz= 1 iTo] ATl {0] {4 1F=11 (0] o [T 32,145,198
FL@ =11 loToz= 11 o] o (U 1[I 26,203

I/O disable function (DEBUG MOTE)........ccuiiiiiiiiiie ittt 125

7@ I g1 (T ¢ (1 | SRR 100,150

I/0 module With INterrupt FUNCLION..........ooiiiiiii e 150

1/O MOUNTING CRECK.......eiiiiiieitie bbb 82

T O 431 T 4o Y o=V o SRR 71,103,139
INAEX MOAIfICALION......cciiiiiiitie e e e e s e e e e e s s s sabbreeeeeees 189

TaTe =) Q=T o 1S3 (T (10 N - SRR 158,162,189
a1 E= I o= To F U 20,75,82,102,103
LI URS (=T o (] O RO OP PPV 225

INPUL AEVICE (X) -+ttt ittt etttk ettt ettt et b bttt sab e s bt e e sab e e e e e e enneas 158,159,198
INPUL FEGISTET (XWV) ittt bbbttt neb e e 158,159,198

265

Index

11T o T PP PPTRTPPTRR 183
Interrupt assigNMEeNt INFOrMALIONcciiiiiiiiiiie e 145,152
Interrupt enable/diSabIe ... 101
INEEITUPL PrOGIAIM ..ottt e e e e e s s e e e e e e s s 100,150
L

= o o [T o =T | = o o I PSPPSR 211,214
LINK GEVICE (Z) weeeieeeiiitiee ittt ettt ettt rbb et e e nab e naa e nneas 158,162
LINK FEQISTET (LW) ettt ettt sttt sttt b et e e nea e e s e 158,162
[T (=T T3 (T o L PRSP UP PP 158,162
LINK REIAY (L) .veeeieteeeitiie ettt ettt sttt sttt sbb et e e nib e saa e e nneas 158,162
M

Y =Tt d I =T o Lo 5] O I PSPPSR PP PP 228
MACTO ENEIY (SFC) ittt ettt sttt rbb e st e e sab e seae e enneas 228
MACTO Program (SFC)......cuuii ittt 223
MACTO SEEP (SFC) ..ttt ettt bbb e naa e neas 227

Y =TT o] (o =10 H PRSP RPN 92,147

[E=T R 10T 1 T @ =11 (o Tox= 1 o o T 23,201
MEMIOIY CAPACIY.....eeitiieitiee ittt ettt ettt b et e sab e e sbb e e st e e sab e e e nbneesnneas 143
MemOory ProteCt FUNCHIONeiiiiii e 110

[oTo [SIoT0] 1 (o] TR 76,83
Mode tranSItioN CONAITION.........ceuuieeiii i e e e s e et s s e e e s s e eebb s s e e eeseeesbaaan s 78,79,80
1Y oTo W 1Y o= ST PO RPN 24,199

[O]y = X G U (o £ T 92,236

N

N scans execution function (DEBUG MOdE)cccceeiiiiiiiiiiiiieiiee e 129
Network assignment iNfOrMationcccooiieiiiiie i 206

o

One time Mode (SUD-PrOgram)oouiiiiiieiiii e 93,96,149,173
Online I/O replacement fUNCHONc.iiiiiieiii e 115
Online program changing fUNCLIONcciiiiiiiiiie e 90,123
(@01 = 110 o I 0 0100 [3PP 17,76,77
Operation MOAE SWILCH........ciiiiiii e 18,76,78
OULPUL AEBVICE (Y) 1tiieiitiee ettt ettt sttt sb e b e se e e bt e s b e e sebe e e nbneeeaes 158,159,198
OULPUL FEGISLE (YWV) ittt b e st e e e ebne e 158,159,198
=]

P-RUN (operation MOde SWItCN).......c.uiiiiiiiiiiiiiiie sttt 18,78,110
PaSSWOIA FUNCLIONveiiiiiieiiee ettt be e b e e nea e 135

266

Index

PeriPhEral SUPPOITuiiiiiieiie ettt b e neb e 88

PLC CONLrol COMMEANTS ...coiieviiiiiieeeieeeetee ettt e e e e et s e e e e s e e e e bt s s e e e e s eeetbba e e eeens 18,78,79
Power interruption dECISIONeooiuiiiiiieiiii e 74

Power interruption Shutdown fUNCLIONooiiiiiiiiii e 111
Program eXECULION SEQUENCEeeiuiieitieeiitie sttt e sttt et st e e sebe e s nbe e e sabe e e sebeesneas 217,218
Program IDceuiiiiii e 143
Program read from EEPROM/IC MEeMOrY Card.........cccoocuvveeiiiieeesiiieeeessieee e siiee e 91,102,103
Program SIZE€ SEHINGeciueieiiiiiitie ettt neb e 143,155
[0 [T TN £ o1 PP PPPPPPPP 33,92,141
Program write into EEPROM/IC MEMOIY Card.......c..cviiiiiirieiiiiee s iiiee e ssiien e siee e 91,102,103
Programming [aNQUAGEcc.ueiiiiiieiiiie ittt 211
Programming precautions for Ladder diagramcccceveiniieinienenee e 219,220
Programming precautions for Multitask............c.cccco i 236,237
Programming precautions fOr SFC.........ouiiiiiiiiii e 233,234,235
R

RAM/ROM SWILCH ...ttt sttt ettt nab e 18,78,79
RAS FUNCHION ...ttt bbb seb e ebe et neb e aneas 104

Real time clock function (clock-calender function)ccocceeviieiiiiienienniee e 168
=T] 1= SRR 156
Register data validity Check fUNCLIONoouiiiiiiiiii e 133,169
Register / device addreSS FaNQE.......uuii ittt sebae e e s enrees 36,37,158
Register / device INItIAliZAtIONcccuviiiiiie e 39,75,82
REtENLIVE MEMIOIY GrEauvviiiiiiei ittt e e e e e e e e e e e e e e e s eaabbeeeeeeas 39,144
RUN (operation MOde SWItCN)coiuiiiiiieiiiie ettt 18,78

[0 1 o7 1 110 1= 1o Lo T 18,78

RUN MOAE ...ttt b bttt seb et e e nab e e b 77

RUN-F MOGE.....coiiiiiiiie ettt bbbt neb e b 77

[o PP PP PPPPPPPP 34,215
UL I 01U g 0] oY SRR 33,214

S

SaAMPING DUFTEI ... e 117
Sampling trace fUNCLIONeiiiiiiiiie e bee e 117

SCAN CONEIOL ...ttt b s e b e s b e e sabe e abbe e e bee e 81

Yo 1 g oy Y/ox [P PPRRRPPPO 21,106,116
S Tor=T o 11T To [T TPV P UPRRUPPOTR 83

S Yor= L B 110 0 L= TET= 1] o SRS 84,144
Self dIagNOSHC CRECK........ciiiiiiiii e 104
SequenCe SEIECHION (SFC)......ii ittt ree e 226
Sequential funCtioN CRAM (SFC)eiiiiieiiii it 212,221
ST O P PP UPRUPRRUPPOTR 212,221

267

Index

SFC CAPACIY M. it e e 233

ST O =1 oo PR 225

Y S O 1T T- 1 2= 11 o PR 224

ST S G310 1 1 T O PP ORI 228

T O - o 1= PR 229

SFC MAIN PIOGIAIM ..eeieitiie ittt ettt ettt e bbb e e s bt e et bt e s be e e sbbe e e sbbe e snbeeessbe e e abeeeaaes 222
SIMUItaneous SEQUENCES (SFC).....uiiiiiiiiiiie ettt 227

Single rung execution function (DEBUG MOdE)...........ccocueiiiiiiiiiieiiiieiiee e 128

Single step execution function (DEBUG MOAE)c.cevuiiiiieiiiiiieniie i 126

Sy LeTol = e (=Y ot () PR 158,161,163
SPECIAI FEOISIET (SW) .ttt st e e st e e e s st e e e s st e e e anree s 158,161,163
Status [AtCh fFUNCHION ... eeree s 122

I (0] o JN (5]) PR 225

SEOP NUMDBDEE (SFC) ..ttt b e bbb 222

3 (0] o LJ U ST =T P P PP RR PR 143

Stop condition setting function (DEBUG MOTE).........c.ceiuiiiiiiiiiiiieriie e 129

YU o o] oo | 7= 2 PR 92,93,148
SUb-program eXeCULION tIMEc.ciiiiiiei ittt ssnae e e s snreeas 95,144
SUBD-TOULING ..t e e st e e e st b e e e s ssbae e e s anbbe e e e anree s 153
SYSEEIM COMIMEINTS ...uuuttitiiiitiiitttieet bbb bbb bb bbb bbb b bbbnnbnnnes 143
SYStEM CONFIGUIALIONeeiiiiie it eee e 71

SYSIEM INFOIMALIONcii it e e s e e s eereeas 32,143
YV (T I T L= 1 4= 1[0] o PR 74

T

BN a LT o LoV o (I L RS RR 87,158,161
BT a1 (=T (U] o] SRS 100,144,150
TIMEr INErTUPL INTEIVAL........eii it snrae e enees 144

gL a =To IS (=] O (1) P SRR 87,158,161
BT G0 oo £ - SRR 87

B 01T T T =] = SRR 88,167
= oIS To T T (]) SRR 225

U

Unit base address Setting fFUNCLIONc.cooiiieiiiiie e 202
Unsigned double-1ength INTEJETcoiiiiiiiiie e 185

L8] EyTo g T=To [] (=T o = S PP OT PP 183

LT o £ = 36,156
USEer data INITALIZATIONcevviiiiiee it e e e e e e s e e e e s s e e e s e e etbb e eeens 39,75,82

(O LT o] 0o | =11 o I PP PP PPPPPPPP 31,141
USEr PrOgram ChECKuviiiiiieie ettt st e s st e e e st e e e s snnae e e s ennreeas 82

USEI PrOgram EXECULIONcoiutiiitiee it ittee sttt et ettt e st e e st e nbb e st e e sabe e s nbe e e sabe e e nebeesnneas 21,83

268

Index

(O Ta oTfeTe | =10 0 0 1 T=T0 0 o] Y2 TP 31,71,141
W

IS (=T o (5] O T SRR PPRO 229
Watchdog tIMEr CRECKoiiiiii e 107

269

TOSHIBA

TOSHIBA CORPORATION

Industrial Equipment Department
1-1, Shibaura 1-chome, Minato-ku
Tokyo 105-8001, JAPAN

Tel: 03-3457-4900 Fax: 03-5444-9268

	USER’S MANUAL
- FUNCTION -
(Ver 1.4)
	Edition
	Contents

	PART 1 BASIC PROGRAMMING
	1 . Overview
	1.1 System design procedures
	1.2 Basic programming procedures

	2. Operation Outline
	2.1 Operation mode and functions
	2.2 Modes transition conditions
	2.3 Operation flow chart

	3. I/O Allocation
	3.1 I/O allocation
	3.2 Input and output registers
	3.3 Rules for I/O allocation
	3.4 Unit base address setting functions

	4. User Program
	4.1 User program configuration
	4.2 System information
	4.3 User program
	4.4 Program execution sequence

	5. User Data
	5.1 User data types and functions
	5.2 Conditions for data initialization

	6. Programming Example
	6.1 Sample system
	6.2 Input/output allocation
	6.3 Sample program
	6.4 Programming procedure

	PART 2 FUNCTIONS
	1. Overview
	1.1 T3 system configuration
	1.2 Functional specifications

	2. Internal Operation
	2.1 Basic internal operation flow
	2.2 System initialization
	2.3 Mode control
	2.4 Scan control
	2.4.1 Scan mode
	2.4.2 Batch I/O processing
	2.4.3 Timer update

	2.5 Peripheral support
	2.6 Programming support functions

	3. User Program Execution Control
	3.1 Program types
	3.2 Main/Sub programs execution control
	3.3 Interrupt programs execution control

	4. Peripheral Memory Support Functions
	4.1 EEPROM support
	4.2 IC memory card support

	5. RAS Functions
	5.1 Overview
	5.2 Self diagnostics
	5.3 Event history
	5.4 Memory protect function
	5.5 Power interruption detection function
	5.5.1 Power Interruption shut down function
	5.5.2 Hot restart function

	5.6 l/O error mapping function
	5.7 Online l/O replacement function
	5.8 Execution status monitoring
	5.9 Sampling trace function
	5.10 Status latch function
	5.11 Debug support function
	5.11.1 Force function
	5.11.2 Online program changing function

	5.12 System diagnostics
	5.13 Password function

	PART 3 PROGRAMMING INFORMATION
	1. Overview
	1.1 Aims of part 3
	1.2 User memory configuration

	2. User Program Configuration
	2.1 Overview
	2.2 System information
	2.3 User program
	2.3.1 Main program
	2.3.2 Sub-program
	2.3.3 Interrupt program
	2.3.4 Sub-routines

	2.4 Comments

	3. User Data
	3.1 Overview
	3.2 Registers and devices
	3.3 Register data types
	3.4 Index modification
	3.5 Digit designation

	4. I/O Allocation
	4.1 Overview
	4.2 Methods of input/output allocation
	4.3 Register and module correspondence
	4.4 Network assignment

	5. Programming Language
	5.1 Overview
	5.2 Ladder diagram
	5.3 SFC
	5.4 Programming precautions
	5.5 List of instructions

	INDEX

