# 燃料電池用省白金触媒電極 M-ACLS

Low-Platinum-Loaded Electrodes for Fuel Cells

| 梅      | 武 | 深沢              | 大志 | 吉永                 | 典裕 |
|--------|---|-----------------|----|--------------------|----|
| MEI Wu |   | FUKAZAWA Taishi |    | YOSHINAGA Norihiro |    |

固体高分子形燃料電池 (PEFC: Polymer Electrolyte Fuel Cell) は, 燃料電池自動車 (FCV) への搭載や家庭用燃料 電池システムとして商品化されており, その本格的な普及のためには, 高い発電効率と耐久性を確保しながら白金触媒を大幅に 削減することが重要になる。

東芝は、これまでにPEFCの省白金化技術として、特異な積層構造を持ったACLS (Alternating Catalyst Layer Structure) 触媒電極を提案した。今回、ACLSの触媒組成とプロセスを見直すことで、酸素還元活性と負荷変動耐久性の大幅な改善に成功した。開発したModified-ACLS (以下、M-ACLSと略記) 触媒電極を用いたPEFC単セルで発電試験を行った結果、現行の高活性触媒の場合と比べて、カソードでは約1/3の0.15 mg/cm<sup>2</sup>まで、アノードでは0.025 mg/cm<sup>2</sup>までの大幅な省白金化が可能であることを実証した。

Although polymer electrolyte fuel cells (PEFCs) have already been commercialized for fuel-cell vehicles (FCVs) and residential fuel cell systems, a technology to reduce the amount of platinum (Pt) catalyst in PEFCs without compromising their power generation efficiency and durability holds the key to their full-fledged dissemination.

To realize this goal, Toshiba has already proposed a technology called the alternating catalyst layer structure (ACLS) that achieves a low-Pt-loaded catalyst layer for PEFCs by means of a unique stacking structure. As part of this research, we have now developed a variation of this technology called the modified ACLS (hereafter abbreviated as M-ACLS) by reconsidering the catalyst composition and fabrication processes of the ACLS electrode, resulting in substantial improvements in the oxygen reduction activity and durability against load fluctuations. Experiments on a PEFC unit cell using the M-ACLS electrode have confirmed that it reduces the amount of Pt to 0.15 mg/cm<sup>2</sup> in the cathode, about one-third of that using conventional platinum-cobalt (Pt<sub>3</sub>Co) catalyst, and to 0.025 mg/cm<sup>2</sup> in the anode.

# 1 まえがき

PEFCは、水素の燃焼反応エネルギーを直接電気エネル ギーに変換する発電装置である。コンパクトで高い発電効率 が特長で、発電時の生成物が水だけで二酸化炭素 (CO<sub>2</sub>)を 排出しないため、FCVや家庭用燃料電池システムに採用され ている。エネルギーの脱化石燃料化及び地球温暖化防止に 向けた水素社会の実現を目指す取組みが推進されており、 PEFCはそのコア技術の一つとして大きな潜在市場が期待さ れる。

PEFCの起電部である膜電極接合体 (MEA: Membrane Electrode Assembly)の基本構造を図1に示す。水素がア ノードに,酸素源である空気がカソードに供給されると,ア ノード触媒表面に吸着した水素は,水素酸化反応によりプロ トンと電子に分離される。プロトンは伝導性がある電解質膜 内を,電子は外部回路を通ってカソードへ移動する。そこで, カソード触媒表面に吸着した酸素との還元反応により水が生 成される。白金は他の材料に比べて触媒活性と耐久性に優れ ることからPEFCの触媒に採用されている。白金は水素酸化 活性が高く,アノード触媒とした場合は活性による電圧降下が



ほとんどないが,酸素還元活性が不十分であり,1.2 Vの理論 電位に対してカソード触媒とした場合は活性による電圧降下 が約0.3 Vに達するため,高活性カソードが求められる。更 に,カソード側は電位が高く白金触媒が溶解する場合もある。 一般に使用されているカーボン粒子上に白金又は白金合金の ナノ粒子が分散担持された白金担持カーボン (Pt/C) 触媒など は,担体であるカーボンの腐食により白金触媒の劣化が促進さ れるという問題がある。そのため現行の触媒では,PEFCの 発電効率と耐久性を確保するため多量の白金触媒が使用され ている。PEFCの本格的な普及にはコスト低減と持続可能な 安定供給が不可欠であり,白金触媒の使用量,特にカソードで の使用量の大幅な削減が重要である。

PEFCの低白金化,更に非白金化を目指した省白金化技術 に関しては、これまで日米の国家プロジェクトを中心に、カ ソード触媒として白金連続膜触媒やコアシェル触媒(シェルで ある白金の内部コアに低コストの材料を使用するコンセプト) などを用いる数多くの検討がなされている<sup>(1)</sup>。その中でもっと も注目されているのが、スパッタリングプロセスとウイスカ基 板技術を用いたウイスカ担持のナノ構造薄膜(NSTF:Nanostructured Thin Film)状白金触媒で、基板コストが高いなど の問題があるが、高い発電特性と耐久性が報告されている<sup>(1)</sup>。

#### 2 ACLS触媒電極での省白金化の特長と課題

前述したように、PEFCの発電特性は触媒活性に強く依存 する。触媒活性は、質量活性(単位質量当たりの活性)が重 要であり、比表面積(単位質量当たりの表面積)と面活性(単 位面積当たりの活性)との積で評価する。一方触媒活性のポ テンシャルを引き出すには、触媒層構造や、膜電極複合体構 成、流路、運転条件などの制御が重要である。触媒層構造を 空孔率の高い多孔質構造にするなど、PEFCの発電に不可欠 な燃料供給や生成物排出などの物質輸送をスムーズに行う必 要があるためである。

東芝は、メタノール形燃料電池用高活性合金触媒の検討に あたって、造孔材料を活用した独自のスパッタリング積層プロ セスを開発し、特異な空孔構造を持つACLS触媒電極の作製に 成功した<sup>(2)-(5)</sup>。これによって、触媒と高空孔率を持つ触媒層を 同時に形成でき、触媒電極の製造工程を大幅に短縮化できる。

代表的なACLS触媒電極の断面電子顕微鏡写真を図2に 示す。現行の触媒層は、カーボン担体、白金ナノ粒子、及びプ ロトン伝導材であるアイオノマー<sup>(注1)</sup>の混合体であるが、ACLS 触媒層は並列した複数の触媒ユニットから構成されている。 触媒ユニット内部は、複数のナノシート状の白金と空隙層から 成る積層構造で、高い空孔率を達成できる。

ACLSの触媒はナノシート状であるため, 触媒比表面積が NSTFに比べて高いが, 現行のPt/C触媒に比べて低い。Pt/C 触媒では, 触媒層のプロトン伝導材などの分布むらによって 電極反応に利用できない白金粒子の存在でナノ粒子白金触媒 の利用効率が50~75%と報告されている<sup>(6)</sup>。これに対し





Typical cross-sectional scanning electron microscope (SEM) images of ACLS electrode and catalyst unit

ACLSでは、プロトン伝導体の添加が不要のため白金の利用 効率が90%以上と高い。厚さが約5nmの白金ナノシートを 用いたACLSカソードの場合、耐久性仕様の現行カソードと比 べ、触媒比表面積は約1/2と低いのに対して、酸素還元反応 の面活性は約3.5倍と高い。これは、露出結晶面などが現行 触媒とは異なる表面構造を持つためと考えられる。触媒比表 面積と面活性から求めたACLSの質量活性は、現行カソード の約1.8倍になる。これまでのPEFC単セルでの発電試験によ りACLSの省白金特性が実証され、PEFCのカソード省白金 化技術として可能性が示された<sup>(2),(3)</sup>。これに対して白金とニッ ケルや白金とコバルトを合金化した単結晶を用いた基礎検討 では、合金触媒の(111)結晶面に現行触媒の10~70倍の酸 素還元面活性があることが複数のグループから報告されてお り<sup>(7)</sup>、白金表面に(111)結晶面が数多く存在するACLSには 酸素還元活性の更なる向上の可能性があると考えられる。

PEFC触媒の耐久性については、燃料電池実用化推進協議 会(FCCJ)がFCVの劣化モードを想定した2種類の耐久性 評価プロトコル(起動停止と負荷変動)を提案している<sup>(8)</sup>。こ れに従った触媒担体の腐食を模擬する起動停止耐久性試験 では、ACLSが3万サイクルの試験後でも触媒の劣化がほとん ど観測されず、高耐久性カーボン担体を用いたFCV用の現行 触媒よりも優れている。しかし白金溶出を模擬した負荷変動 試験では、耐久性が不十分であることが判明した<sup>(5)</sup>。ACLS の白金触媒は、ナノシート状になっており、微量な白金溶出が あっても触媒比表面積が変化しない構造であることから、触 媒又は触媒層の改良によって負荷変動耐久性の大幅な向上が 可能であると期待される。

# 3 M-ACLSの開発

#### 3.1 触媒及び触媒層の改良

当社が開発したスパッタリング積層プロセスは,触媒組成 とプロセスの調整,及び後処理の導入により,触媒又は触媒 層に様々な形態や構造を形成できることから,触媒又は触媒 層構造の設計自由度が高い。負荷変動耐久性の改善と酸素 還元活性の向上を目指し,これまでのACLSの触媒組成及び プロセスの見直しを行ってM-ACLSを開発した<sup>(9), (0)</sup>。

典型的なM-ACLSの断面電子顕微鏡写真を図3に示す。 従来のACLS(図2)とは異なり,触媒シートが多孔質になって いることがわかる。酸素還元反応での電流変化を測定するサ イクリック ボルタンメトリー法により,M-ACLSの触媒比表面 積はACLSと比べ約10%向上することを確認した。触媒層の 空孔率も向上し,現行よりも高い85体積%以上を達成した。

#### 3.2 PEFCカソードへの適用

反応面積50 cm<sup>2</sup>のPEFC単セルにおいて,M-ACLSをカ ソードとした場合の酸素還元活性を評価した。試験は,セル 電圧0.9 Vで,セル温度80℃,ガス湿度100%,1.5気圧の環 境下で10分間維持して行った。得られた各種触媒電極の酸 素還元活性を**表1**に示すが,M-ACLSはACLSに比べて酸素 還元面活性が2倍以上改善できることを確認した。また表1 から,M-ACLSは高活性な現行カソード(白金-コバルト合金 担持カーボン(Pt<sub>3</sub>Co/C)触媒)に比べて白金量を約2/3に削 減できると予測される。



| MEA                                     | 触媒比表面積 | 面活性(酸素還元) | 質量活性(酸素還元) |  |  |  |
|-----------------------------------------|--------|-----------|------------|--|--|--|
| Pt/C*                                   | 1      | 1         | 1          |  |  |  |
| Pt₃Co/C                                 | ~ 0.9  | ~1.8      | ~1.6       |  |  |  |
| ACLS                                    | ~ 0.5  | ~ 3.5     | ~1.8       |  |  |  |
| M-ACLS                                  | ~ 0.55 | ~10       | ~ 5.5      |  |  |  |
| *現行触媒 (熱処理したPt/C触媒)の耐久仕様。カソードのデータにより正規化 |        |           |            |  |  |  |

次にM-ACLSカソードの負荷変動耐久性について、FCCJ 提案のプロトコル(セル温度80℃,電位幅0.6 V⇔1.0 Vの矩形 (くけい)波による電位サイクル)により評価した。M-ACLSと ACLSの触媒比表面積の評価結果を図4に示す。触媒比表 面積は、ACLSが25千サイクル弱で約30%低下したのに対 し、M-ACLSでは3万サイクル後でも劣化がほとんど認められ なかった。単セルでの評価では、3万サイクル後のM-ACLSカ ソードの電圧低下が0.03 V以内に抑制できており、高い負荷 変動耐久性が確認できた。

また,負荷変動耐久性の試験前後でM-ACLSカソードの MEA断面観察を行った結果,空孔率など積層構造の変化は ほとんど認められなかった。更に,現行カソードの場合には 試験後の電解質膜中にバンド状に偏析している数十~数百 nmの粗大白金凝集粒子が存在するが(図5),M-ACLSカ ソードでは観測されなかった。このような白金バンドの生成メ カニズムは,電位サイクル中に白金が溶解し,電解質膜で再析 出するためと報告されている。M-ACLSでは,組成の改良又 は後処理の導入で触媒が改質され,電気化学的な安定性が高 くなったことで白金の溶解が抑制されたためと考えられる。



**凶4. 照保に衣面積の負何変動リイクル依存性**一 無燥比衣面積は、 ACLSでは25千サイクル弱で約30%低下したのに対し、M-ACLSでは 3万サイクル後でも劣化がほとんど認められない。 Dependence of surface area (normalized) on number of load cycles



### 3.3 PEFC アノードへの適用

白金の水素酸化活性が高いためPEFCアノードの白金量は 極少量でも十分であるが、PEFCシステムの転極などによりア ノード側にも白金溶解が発生する可能性がある。そのため現 行触媒では、耐久性を確保するために白金が多量に使用され る場合が多い。この問題を解決するために、M-ACLS電極を PEFCアノードとして適用できないか検討した。その結果. 白 金量が0.025 mg/cm<sup>2</sup>以上であればFCV応用に要求される 1 A/cm<sup>2</sup>の高電流密度でもアノード触媒活性による発電ロスが ないことを確認できた。

PEFC システムの転極現象を模擬するため、単セルにおいて M-ACLSアノードに対し1万電位サイクル (セル温度80℃, 電 位幅0.05 V⇔1.0 Vの矩形波による電位サイクル)の負荷変動 耐久性試験を行い,試験前後の触媒比表面積及び特性に変化 がないことを確認した。また電解質膜の中に白金バンドも観測 されず、M-ACLSは超低白金量のアノードとして極めて有望な ことを実証できた。

#### 3.4 PEFC 単セルでの発電特性ファイル

電極面積50 cm<sup>2</sup>のPEFC単セルにおいて、白金ローディン グ量0.15 mg/cm<sup>2</sup>のM-ACLSカソード及び白金ローディング量 0.025 mg/cm<sup>2</sup>のM-ACLSアノードを用いたMEAを作製し、 FCVの発電条件を模擬したプロトコル (セル温度80℃, 1.5気 圧,水素利用効率70%,空気利用効率40%)による発電試験 を行った。触媒電極としての可能性を評価するため、純酸素を カソードに供給して発電試験を行った。

試験結果を図6に示す。比較のため、白金ローディング量が 0.4 mg/cm<sup>2</sup>のPt<sub>3</sub>Co/C触媒のデータも併記した。M-ACLS は、Pt<sub>3</sub>Co/Cの白金量の約1/3でほぼ同等な発電特性が得ら れ、M-ACLSの酸素還元活性の評価結果ともほぼ一致し、高 活性であることを実証できた。FCV応用に要求される高電流 密度特性についてもPt<sub>3</sub>Co/Cと同レベルであり、M-ACLS触



媒層の高い空孔率と特異な空孔構造により, 大幅な省白金化 が可能なことも実証できた。

# 4 あとがき

今回, ACLS省白金触媒電極の触媒組成とプロセスを見直 し、高い負荷変動耐久性と発電特性を持つM-ACLSカソード 及び M-ACLS アノードを開発し、大幅な省白金化が可能であ ることを実証した。

近年,家庭用燃料電池システムやFCVの他,PEFCを搭載 したフォークリフトや、バス、業務用ドローンなどの商用化も急 速に進められている。M-ACLS触媒電極をこれらのPEFCへ 搭載することを目指して、量産技術の確立と更なる省白金化を 進めていく。また、CO2フリー水素製造用水電解など、他のア プリケーションへの適用可能性も積極的に検証していく。

# 文 献

- (1) Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature. 486, 2012, p.43 - 51.
- (2) 梅 武 他. 触媒層担持基板の製造方法、触媒層担持基板、膜電極複合 体、および燃料電池. 特許第5342824号. 2013-11-13.
- (3) W. Mei et al. Method for producing catalyst-layer-supporting substrate, method for producing membrane-electrode assembly and method for producing fuel cell. U.S. Patent 8128986 B2. 2012-03-06.
- (4) W. Mei, et al. Development of Alternated Catalyst Layer Structure for PEM Fuel Cells. ECS Trans. 50, 2, 2013, p.1377 - 1384.
- (5) 深沢大志 他. 燃料電池向け触媒層の省白金化技術. 東芝レビュー. 68, 4, 2013, p.54 - 57.
- 内田 誠 他. 固体高分子形燃料電池の触媒層のPt削減と耐久性向上の (6) ための開発の歴史と将来設計. 粉砕. 56, 2013, p.3-11.
- Stamenkovic, V. R. et al. Improved oxygen reduction activity on (7)Pt<sub>3</sub>Ni(111) via increased surface site availability. Science, 315, 5811, 2007, p.493 - 497.
- (8) FCCJ. 固体高分子形燃料電池の目標・研究開発課題と評価方法の提案. 2011, 30p. <http://fccj.jp/pdf/23\_01\_kt.pdf>, (参照 2013-02-15).
- (9) 梅 武 他. "低白金 ACLS 電極の PEFC 適用検討". 電気化学会第82回大 会講演要旨集. 横浜, 2015-03, 電気化学会. 2015, 1B25.
- (10) W. Mei et al. Application of Modified-ACLS Electrodes on Low-platinum PEFCs. ECS Trans. 69, 17, 2015, p.755 - 759.



#### 武 MEI Wu, Ph.D. 梅

技術統括部 研究開発センター トランスデューサ技術ラボラ トリー研究主幹,博士(工学)。触媒材料及び電気化学セル の研究・開発に従事。電気化学会会員。 Transducer Technology Lab.

#### 深沢 大志 FUKAZAWA Taishi

技術統括部 研究開発センター トランスデューサ技術ラボラ トリー研究主務。触媒材料及び電気化学セルの研究・開発 に従事。電気化学会会員。 Transducer Technology Lab.

吉永 典裕 YOSHINAGA Norihiro

技術統括部 研究開発センター トランスデューサ技術ラボラ トリー研究主務。触媒材料及び電気化学セルの研究・開発 に従事。電気化学会,触媒学会会員。 Transducer Technology Lab.