高効率と負荷安定性の改善とを実現した 電子レンジ用マグネトロン2M403/E4500

2M403/E4500 Magnetron with High Efficiency and Improved Load Stability for Microwave Ovens

加藤 直也

KATO Naoya

省エネへの機運が世界的に高まるなか、省エネ目標の達成度合いを表示する省エネラベリング制度が2008年にわが国で 導入され、2010年には中国でも導入された。欧州も独自のラベリング制度の導入へ向けた動きがある。こうした省エネ化への ニーズは電子レンジでも同様であり、東芝ホクト電子(株)は、高効率マグネトロン2M303を2007年に製品化した。2M303 は使用電源に制約があり、主にインバータ仕様のハイエンドモデルに採用されている。

今回当社は、電源制約のない扱いやすいマグネトロンを目標に、2M303の高効率を維持しながら負荷安定性を改善した 電子レンジ用マグネトロン2M403/E4500を開発した。

Accompanying the increased momentum toward energy conservation, attention has been focused on energy-saving labeling programs worldwide. Such programs were introduced in Japan in 2008 and in China in 2010, and a similar movement has subsequently been taking place in Europe. In response to this situation, Toshiba Hokuto Electronics Corporation launched the 2M303 high-efficiency magnetron for energy conservation in microwave ovens in 2007. The 2M303 model has mainly been applied to high-end systems using inverters due to power supply restrictions.

We have now developed the 2M403/E4500 magnetron balancing high efficiency with improvement of load stability. In comparison with the previous 2M303 model, the new 2M403/E4500 magnetron does not require a complex power control mechanism, while it has the same level of efficiency as 2M303 model.

1 まえがき

電子レンジの加熱原理は、マイクロ波で加熱物に含まれる水 分子を振動させて熱を発生させる、マイクロ波誘電加熱を用 いるものである (図1)。

マイクロ波加熱は,加熱物だけにエネルギーが吸収され効率的な加熱が行えるため,加熱時間が圧倒的に短い調理機器 で広く普及している。そのマイクロ波は,マグネトロンと呼ばれるデバイスで発生させている。マグネトロンは一種の二極真空 管であり,負荷変動によるエネルギーの反射に強いことが特 長である。

近年,省エネへの機運が世界的に高まるなか,省エネ目標 の達成度合いを表示する省エネラベリング制度が2008年に わが国で導入され,2010年には中国でも導入された。欧州で も独自のラベリング制度の導入へ向けた動きがある。こうした 省エネ化へのニーズは電子レンジでも同様であり,出力効率の より高いマグネトロンが求められている。

ここでは、マグネトロンの原理、課題と従来行ってきた対策、 及び東芝ホクト電子(株)が今回開発した、高効率を維持しな がら負荷安定性を改善した電子レンジ用マグネトロン2M403/ E4500について述べる。

2 マグネトロンの構造と動作原理,及び課題

2.1 マグネトロンの構造と動作原理

マグネトロンは、円筒形の陽極 (アノード)と、その中心に配 置された熱電子を放射する陰極 (カソード)で構成され、円筒 状のアノードを上下からマグネットで挟んで軸方向に磁界を印 加する、一種の二極管である (図2)。カソードから放射された 熱電子は電界によりアノード方向に加速されるが、通常の二極 管とは異なり、磁界により軌道を曲げられてアノード・カソード 間で周回運動をする (図3)。この熱電子流と、アノードに設け た共振器との相互作用の結果、2.45 GHzのマイクロ波が発生 する。

2.2 マグネトロンの異常発振

マグネトロンの出力特性を表す方法として図4に示すリーケ 線図を用いる。図4はマイクロ波回路に負荷を接続した際の 定在波位相と定在波比に対する出力効率と周波数の関係を示 したものである。

マグネトロンは、定在波位相と負荷状態により様々な異常発 振を起こすことがある。正常発振と代表的な異常発振のアノー ド電流波形を図5に示す。異常発振のうち、発振モードがジャ ンプして位相が移り、発振状態が不安定になる現象を"モー ディング"と呼ぶ。モーディングにはエミッション性のものと負 荷性のものがある。エミッション性は電子放出量が少ないと 発生する異常モードであり、また、負荷性は接続した負荷の 影響により反射されたエネルギーでマグネトロン内部の高周波 電界が乱されて発振できなくなる異常モードである。

負荷性モーディングは図4に示したシンク領域で発生しやす く,また、マグネトロンの出力効率が高くアノード電流が大きい 領域もシンク領域付近にあるため、電子レンジの動作点をこの 領域に設定する際は、マグネトロン側で負荷性モーディングに

図4. マグネトロンのリーケ線図 — シンク領域では負荷性モーディング が発生しやすい。

Failure mode of magnetron oscillation

対する耐力改善を行う必要がある。

2.3 電子レンジの電源回路とモーディングの関係

マグネトロンは、アノード電圧が交流、整流した脈流、及び 平滑した直流のいずれでも動作可能である。直流電源を用い れば負荷性モーディングの発生を抑えられるがコストを増加さ せるため、通常の電子レンジではコストの低減を重視して、安 価な半波倍電圧電源回路を採用している(図6)。この方式で は、電流波形が脈流になりリップル率が大きく、アノードピーク 電流*i*bはアノード平均電流*I*bの4倍になる(図7(b))。

出力を増大させるために*I*_bを大きくすると*i*_bも大きくなり, モーディングが発生しやすくなる。

2.4 マグネトロン構造から見た負荷安定性

マグネトロン内の電界と磁界の分布をシミュレーションして、 断面図にプロットした結果を図8に示す。赤枠の部分がアノー ド・カソード間で熱電子が周回運動する領域である。電界と

Anode current and anode voltage waveforms of magnetron

磁界が直交する領域(図8で磁力線と等電位面が平行の領域)を拡大するほど負荷安定性が良くなる。しかしその一方で、電子の空間内抑制力がなくなり、カソードとアノードの間隙から電極間外へ漏れる電子の増大と、出力効率の低下という特性悪化を引き起こす。これを避けるため、カソードの両端部に円盤状のシールド(エンドハット)を設けて電子の漏えいを抑制する構造としている。

また、構造上、マグネットを軸上に配置できないため、ドー

ナツ状のマグネットを両端に配置し、すり鉢状の円盤(ポール ピース)で磁束をエンドハットとポールピースの間隙に収束させ ているが、磁力線が鼓状になり電子が漏えいしやすくなる。そ のため、エンドハットを非常に大きくしなくてはならないという 問題がある。

3 負荷安定性を向上させるための従来の施策

種々のマグネトロンの,出力効率と負荷安定性の関係を図9 に示す。負荷安定性は,モーディングが発生しない限界となる アノード電流のピーク値 Peak ibを指標として表す。Peak ibが 大きいほど負荷安定性が良いことを示している。

MAG1は試作評価品であり、アノード共振器の分割板Vの 軸方向の長さ V_h を3通りに変え、それぞれの場合でアノード 径2 r_a とカソード径2 r_c の比率 r_c/r_a を0.41 ~ 0.45の範囲で変 化させたときの結果である。カソードなどの寸法は V_h との比 率が同じになるように設計している。評価の結果から、 V_h が 大きいほど負荷安定性が良くなるが、出力効率は低下すること がわかった。

こうした試作評価の結果に基づいて開発した,当社のマグネ トロン製品の特性も,図9に併せてプロットしてある。2M248 系,2M282,及び2M303は1kW出力対応,2M240系は800W 対応の製品群である。

マグネトロンを安定して発振させるため,経験上r_c/r_aが0.43 以上になるように設計しており,2M248-Nでは0.43,2M248-B では0.44である。ただし,2M282は効率重視の設計で0.42と している。2M240-Fは0.43である。

基本設計仕様は、 $V_h \varepsilon$, 1 kW対応製品で9.5 mm, 800 W 対応製品で8.5 mmとして、トランス電源方式の場合に要求さ れる Peak $i_b \varepsilon$ カバーし負荷安定を確保している。

2M282は、高効率の要求に応えて2000年に製品化した機種である。*Peak i*bが低いため、電源制御に優れたインバータ電源を用いたハイエンドモデルに限定して採用された。

その後、わが国の市場における省エネの要求は更に強まり、 当社はMAG2による試作評価に基づいて設計した高効率機 種である2M303を2007年に製品化した。基本設計仕様は V_h=8 mmとして負荷安定性の点では不利であったが、ポール ピースの形状を変えて磁束密度分布を最適化し、2M282と同 等の負荷安定性を維持しながら出力効率を向上させることが できた。わが国の市場では、省エネ、小型、及び電源制御に 優れているインバータ電源が既に主流となっており、負荷安定 に関しては実用レベルで問題はなく採用された。

2M303と同じ基本仕様で,MAG2による試作評価に基づい て開発した2M240-Cを同年に製品化した。800W出力対応 であるがコンパクト化し,高さを8%,質量を9%削減した。

近年,欧州でも省エネへの要求が強まり,高効率機種の市場が拡大することも予想されるが,電子レンジの庫内も大きく,高出力化の要求も高い。また,トランス電源が主流であり,2M303の負荷安定改善が必要とされる。

4 2M403/E4500の基本設計

4.1 基本設計の目標値

前述した要求に応えた新製品2M403/E4500を開発するに 際して,現行の高効率マグネトロン2M303の出力効率74%を 維持しながら,負荷安定性を更に改善して,*Peak i*bが2A以 上という目標値を設定した。

4.2 改善のポイント

負荷安定性を改善するため,電界と磁界が直交する領域を 拡大することで安定発振領域の拡大を図った。その結果とし て生じる漏えい電子増大の抑制対策も講じた。また,最大磁 東密度は現行機種である2M303と同等のレベルを確保できる 磁気回路設計とし,アノード・カソード間の電子効率も2M303 と同等レベルの共振器設計を行い,出力効率と負荷安定性の バランスを図った。2M403の設計仕様はV_h=7.5 mm, r_c/r_a =0.46である。

図10に示すとおり、V_h、ポールピース間距離P_L,及びカ ソードの長さC_Lの各パラメータの値と各部品の配置を変更す ることで入力側での電界と磁界の直交領域を拡大して低減し、 同時に安定発振領域の拡大を図った。

電界強度のシュミレーション結果の例を図11に示す。入力 側の電界強度の分布が従来管に比べて小さくなっていること から抑制力も小さくなっていると推測でき,負荷安定性も改善

Locations of design parameters

図11.電発強度のシミュレーション結果の例 — 2M403/E4500では人 力部の電界強度が従来管より小さく、負荷安定性が改善されていると期待 できる。

Examples of results of electric field intensity simulations of 2M403/E4500 and 2M303 $\,$

されているものと期待できる。

今回開発したマグネトロン2M403/E4500の出力特性を,図 9に併せてプロットしてある。この結果から現行2M303と同 等の出力効率を維持しながら,負荷安定性も目標値どおりに 改善されていることがわかる。

5 あとがき

使用電源に制約のない扱いやすい電子レンジ用の高効率マ グネトロン2M403/E4500を開発した。省エネ市場の拡大に 向けて、2015年4月からの本格生産を計画している。

加藤 直也 KATO Naoya

東芝ホクト電子(株) マグネトロン事業部 マグネトロン技術 グループ長。電子レンジ用マグネトロンの設計・開発に従事。 Toshiba Hokuto Electronics Corp.