フォトニック結晶構造を用いたCMOS イメージセンサ用カラーフィルタ設計技術

フォトニック結晶構造を利用したカラー フィルタで、肉眼に近い色合いを再現

携帯端末やデジタルカメラなどに用いられるCMOS (相補型金属酸化膜半導体) イメージセンサの高画質化が 求められています。特に、カメラを通して見た被写体の色 合いを、より肉眼に近づけることが重要になっています。 従来のCMOSイメージセンサでは、特定の波長の光を 吸収する吸収型のカラーフィルタが用いられていました。 しかし吸収材料の組合せには限りがあり、人が直接目で 見た色合いの再現は困難です。

そこで東芝は、微細な形状を採用することによって透 過する波長を選択できるフォトニック結晶構造カラーフィ ルタの設計技術を開発し、肉眼に近い色合いのCMOS イメージセンサの実現を目指しています。

B画素 G画素 R画素

図1. RGB吸収型カラーフィルタのイメージ — フォトダイオード上に吸収型 カラーフィルタをパターニングすることで、特定の波長の光を透過させます。

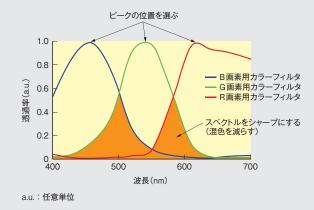


図2. 吸収型カラーフィルタの透過率スペクトル — ピークの位置を選び、混 色を低減することが重要になります。

従来のRGBカラーフィルタは光を吸

す。それに伴いCMOSイメージセンサ の高画質化が求められており、特に画 質指標の一つである色合いを肉眼に近 づけることが重要になります。 CMOSイメージセンサは、フォトダイ

CMOSイメージセンサの課題

ジタルカメラなどの普及によりCMOS

イメージセンサの市場が拡大していま

近年、携帯電話や、スマートフォン、デ

オード上の各ピクセル (画素) に赤 (R), 緑 (G). 青 (B) の三原色のそれぞれを 透過するカラーフィルタがパターニング された構成になっています(図1)。

RGBカラーフィルタはそれぞれ透過 率の波長依存性(透過率スペクトル)を 持っており、そのスペクトル形状によっ てCMOSイメージセンサの色合いが決 まります。

収する材料が用いられており、この場合 の诱過率スペクトルは材料の特性で決 まってしまいます。材料の組合せには 限りがあり、人の目が持っている視覚特 性とは異なっています。したがって、 CMOSイメージセンサで撮像した画像 と肉眼とでは、その色合いに差が生じ るという問題があります。

カラーフィルタの透過率スペクトルを 人間の視覚特性に近づけるには、RGBス ペクトルのピーク位置を任意に選び. 透 過率スペクトルをシャープ (混色が少な い)にすることが重要になります(図2)。

フォトニック結晶構造を用いた カラーフィルタ

そこで東芝は、材料物性ではなく、 微細構造を採用することによって透過 率スペクトルを制御できるフォトニック 結晶構造カラーフィルタの開発を行って

フォトニック結晶構造では, 特定の 波長の光だけが周期構造体と共鳴して 反射や透過を起こします。今回は、特 定の波長の光を透過させることができ る誘電体多層膜と、特定の波長の光を 反射させることができる導波モード共 鳴格子の二つを組み合わせたカラー フィルタを設計しました(図3)。

誘電体多層膜を用いた RGBピークの選択

ある波長の光が波長と同程度の厚さ の薄膜に入射すると、薄膜干渉により光 が強め合ったり弱め合ったりする現象が 起こります。透過光が弱め合う条件と なる膜厚のとき、入射した光は全て反射

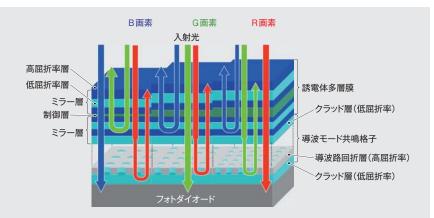


図3. 誘電体多層膜と導波モード共鳴格子 — 誘電体多層膜と導波モード共鳴格子 (回折格子+ 導波路)を組み合わせて、カラーフィルタを構成します。

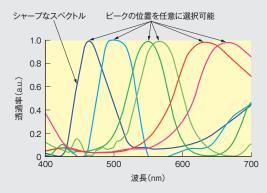


図4. カラーフィルタのスペクトルの例 — 誘電体多層膜と導波モード共鳴格子の構造を最適化する ことで、任意のピークを持ち混色の少ないカラーフィルタを実現できます。

されます。この現象を利用して高屈折 率と低屈折率の積層膜の膜厚を適正化 することで、可視光領域全ての光を反 射させるミラーを作ることができます。

一方. ミラー層内で透過光が強め合 う条件となる制御層を1層設けることに よって、任意の波長の光だけを透過させ るカラーフィルタとなります。 フォトダイ オード上にR, G, Bそれぞれに対応し た制御層を設けた誘電体多層膜をパ ターニングすることで、RGBのカラー フィルタが実現できます(図3)。この とき誘電体多層膜は層数が多いほど シャープな透過率スペクトルとなり、混 色を減らすことができます。しかし、層 数を増やすとCMOSイメージセンサの ピクセルサイズよりも厚いカラーフィル タになってしまい、RGBピクセル間で 空間的に光が横に漏れて透過率スペク

トルとは関係のない混色を起こします。

導波モード共鳴格子を用いた シャープな透過率スペクトルの実現

この空間的な漏れ光による混色を防 ぐために、層数を増やさずに透過率ス ペクトルをシャープにすることが必要に なります。そこで、特定の波長に対して 回折格子で曲げられ、かつ導波路中に 閉じ込められる光が、再度回折によって 反射光となるフォトニック結晶構造を用 いた導波モード共鳴格子を. 誘電体多 層膜に組み合わせました(図3)。

例えば、G画素では回折格子の周期 を赤色光が反射する条件とし、一方R 画素では回折格子の周期を緑色光が反 射する条件とすることによって、透過率 スペクトルをシャープにすることができ ます。

カラーフィルタの設計

誘電体多層膜と導波モード共鳴格子 を組み合わせて、カラーフィルタの設計 を行いました。

誘電体多層膜の厚さと材料、回折格子 の形状 (ホールパターンやラインパター ン). パターン周期. 及び材料を変えて. 厳密な波動解析に基づいた数値計算で 透過率スペクトルを求めました(図4)。

構造を最適化することによってピー クの位置を450 nmから670 nmの範 囲内で任意に選ぶことが可能で、透過 率スペクトルがシャープなカラーフィル タを実現できることがわかりました。

また、試作品の透過率スペクトルの 測定結果と計算結果が一致することも 確認できました。

今後の展望

肉眼に近い色合いの画像を撮像でき るCMOSイメージセンサの実現のため に. 誘電体多層膜と導波モード共鳴格 子を用いたカラーフィルタの設計技術を 開発しました。

今後は、CMOSイメージセンサへの 搭載試作や低コストな製造プロセスの 検討を行います。また、監視カメラや モーションカメラで必要な赤外波長領 域のIR (InfraRed) フィルタや、色合い をより肉眼に近づけることができる 4色以上のカラーフィルタにも応用でき ると考えています。更に、CMOSイメー ジセンサだけでなく, ディスプレイやプ ロジェクタなどの表示機器への展開も 考えられます。

今野 有作

生産技術センター 光技術研究センター研究主務