低消費電力のキャッシュメモリを可能にした 垂直 STT-MRAM

Application of Perpendicular STT-MRAM to Cache Memory for Substantial Reduction in Power Consumption

北川英二	藤田 忍	伊藤順一	
KITAGAWA Eiii	FUJITA Shinobu	ITO Junichi	

キャッシュメモリの大容量化に伴い、データを保持するために使用されるエネルギーは増加の一途をたどり、無視できない問題となってきている。これを解決するため、データ保持エネルギーを必要としない不揮発性メモリであるMRAM(Magnetoresistive RAM)が検討されている。しかし従来のMRAMには、データ保持エネルギーは削減できるものの、書込み電流が大きいために消費電力がかえって増大してしまうという課題があった。

今回東芝は,低電流で書込みが可能な垂直記憶素子を用いたスピン注入型 (STT: Spin-Transfer Torque)-MRAMを キャッシュメモリに適用することで, SRAM (Static RAM) と同等の動作速度を保持しながら,消費電力を80%低減できる ことを示した。

The increase in power consumption of cache memories for data retention is a serious issue accompanying the increase in their capacity. Magnetoresistive random-access memories (MRAMs), which are a nonvolatile type of cache memory that do not consume energy for data retention, are under consideration as a solution to this issue. However, they have the significant disadvantage of increased power consumption due to higher writing current.

Toshiba has now developed a perpendicular spin-transfer torque (STT)-MRAM using low-power writable perpendicular-magnetic tunnel junction (p-MTJ) devices, and confirmed through simulations that a reduction in power consumption of more than 80% can be expected while maintaining mobile processor performance equivalent to that of static RAMs (SRAMs).

1 まえがき

近年、スマートフォンやタブレット及び Ultrabook[™](注1)をは じめとするヒューマン インタフェース機器の利便性向上と情報 のクラウド化によって、情報の送配信量は爆発的に増加し、情 報処理に用いられるエネルギーは増加の一途をたどっている。 この情報処理量の増大に対処するためキャッシュメモリを大容 量化すると、微細化によってリーク電流が増加し、データ保持 のためにキャッシュメモリに消費されるエネルギーが著しく増 大することが特に問題となってきている。

そこで,消費電力低減の観点から,データ保持のために電 力を消費しない不揮発性メモリへの代替が検討されている。 しかし,不揮発性メモリとしてNAND型フラッシュメモリや, HDD (ハードディスクドライブ),強誘電体メモリ (FeRAM: Ferroelectric RAM),相変化メモリなどが知られているが, これら不揮発性メモリは動作速度が遅いか,繰返しの書込み を行うと記憶素子が壊れてしまうため,キャッシュメモリとして 用いることができなかった。

一方,スピン注入型の書込み方式を用いたSTT (Spin-Transfer Torque)-MRAM (Magnetoresistive RAM) は不揮 発性メモリでありながら,動作速度が速く,無限大に近い繰返 し書込み耐性を保持できることから、低消費電力のキャッシュ メモリを実現できる有力候補と考えられている⁽¹⁾。しかし、こ れまでのSTT-MRAMは、書込みに消費される電力が巨大で あったため低消費電力化することが困難であった。

この問題に対して,東芝は,書込みに用いられる消費電力 を低減するため,STT-MRAMの記憶素子に垂直磁気異方性 を持つ磁気トンネル接合膜を適用し⁽²⁾,30 nm以下に微細化 させ,かつ磁化反転時及び書込み時のエネルギーを低減でき る材料に置き換えた。このように,STT-MRAMをキャッシュ メモリとして用いることで,従来のSRAM (Static RAM)を用 いたキャッシュメモリと同等の動作性能を保持しつつ消費電 力低減を実現した⁽³⁾。

ここでは、STT-MRAMの書込みエネルギーの低減方法 と、書込みエネルギーを低減させたSTT-MRAMをキャッ シュメモリに用いた場合の性能について述べる。

2 STT-MRAMを用いたキャッシュメモリの 低消費電力化のコンセプト

従来,キャッシュメモリとして採用されているSRAMは揮 発性メモリのため,データを保持するためのエネルギーを供給 し続けなければならない。つまりデータ保持時間が長くなる ほど消費電力が増加する,そこで,一定の時間以上読み書き

⁽注1) Ultrabookは、米国及びその他の国におけるIntel Corporationの 商標。

動作を実施しない場合,電源を遮断するシステム(パワーゲー ティング)を採用している。しかし,電源を遮断すると記憶情 報が失われてしまうため,再書込みによるエネルギー消費の観 点から,パワーゲーティングの適用範囲は限定されていた。

パワーゲーティングを用いた場合のSRAMとSTT-MRAM の消費電力の違いを図1に示す。図1(a)がキャッシュメモリと してSRAMを用いた従来の場合で、アプリケーションが非動 作時にデータ保持電力を遮断することでエネルギー消費を低 減させている。しかし、アプリケーション動作時にデータ保持 電力を遮断すると、失われたデータを再書込みするために多 大のエネルギーを消費するため、頻繁に読み書きする場合に はかえって消費電力が増加する。このため、パワーゲーティン グが使用可能な範囲は、アプリケーションが非動作のときに 限定されていた。その結果、データ保持のための電力消費が SRAMの短所として残っている。

一方、キャッシュメモリとしてSTT-MRAMを用いた場合 (図1(b))には、記憶素子に書き込まれた情報が不揮発のため、 アプリケーション動作時においてもデータ保持電力の供給が 不要になる。つまり、SRAMで消費されていたアプリケーショ ン動作時のデータ保持エネルギーが不要になり、消費電力の 低減が可能になる。しかしSTT-MRAMの書込み電力は SRAMに比べ大きいため、SRAMをSTT-MRAMに代替する ことの長所を生かすためには、式(1)を満たせるまでSTT-MRAMの書込みエネルギーを低減させる必要があった。

SRAMデータ保持エネルギー+SRAM書込みエネルギー >STT-MRAM書込みエネルギー (1)

3 磁気記憶素子の低消費電力化

STT-MRAMに用いられる記憶素子への書込みエネルギー は式(2)で与えられる。

書込みエネルギー=書込み電圧×書込み時間×書込み電流(2)

書込み電圧は,記憶素子に用いられるトンネル絶縁膜の膜 厚を変えることで,比較的容易に調整可能である。したがっ て,書込み時間と書込み電流をともに低減できれば大幅な消 費電力低減が可能になる。しかし,これまでの報告によれ ば,高速書込みと低電流書込みを両立できた実例はなく, STT-MRAMの書込みエネルギーの増加という短所が顕在化 していた。

そこで、高速で低電流の書込みを可能にするため、当社が これまで開発してきた低電流書込みに適した垂直磁化方式⁽²⁾ を用いるとともに、書込み電流を更に低減するため次に述べる 手法を取り入れた。

3.1 記憶素子の微細化による書込み電流の低減

微細化によって書込み電流が低減するモデルを図2(a)に示 す。記憶素子のサイズが大きい場合,記憶素子はサブドメイン と言われる複数の不揮発な情報保持セルから成る⁽⁴⁾。記憶素 子のサイズがサブドメインのサイズより大きい場合,複数のサブ ドメインに対して情報が記憶されるため,書込み電流は増加す る。逆に,記憶素子のサイズとサブドメインのサイズが同一に なるまで微細化が可能になれば,書込み電流は最小となる。

しかし,記憶素子として用いられる磁性材料は耐食性が悪

Effect of downsizing on switching current

いため記憶素子に酸化などのダメージが入りやすく,特に微細 素子において,ダメージによる書込み電流の増加が問題となっ ていた。そこで,記憶素子の加工プロセスを改良し,記憶素子 へのダメージを低減することで,書込み電流が記憶素子の面 積に比例して低減できることを実験的に実証した(図2(b))。 低ダメージプロセスと30 nm以下の微細加工を両立させるこ とで,低電流書込みを可能にしている。

3.2 書込み時のエネルギーロスの低減

書込みで印加された電流はスピントルクを与え記憶層を磁 化反転させる。また、スピントルクによって記憶層の磁化が反 転する際、スピントルクを抑制する方向に働くのがダンピング 項であり、ダンピング定数と呼ばれている。ダンピング定数を 小さくできれば磁化反転が容易になり、書込み電流の低減が 可能になる。

ダンピング定数の低減によって書込み電流が低減するモデ ルを図3(a)に示す。ダンピング定数が大きいと、記憶層に印 加されたスピントルクが磁化反転時に失われ、書込み電流は 上昇する。一方、ダンピング定数が小さくなると、失われるス ピントルクは低減され、書込み電流の低減が可能になる。

書込み電流とダンピング定数の関係を図3(b)に示す。1996年 にSlonczewskiやBergerらによって提唱された理論どおり, ダンピング定数に対して,書込み電流は比例して低減できるこ とを証明している。更に当社は,垂直磁気記憶層として世界 最小^(注2)となるダンピング定数0.004を実現した垂直磁化材料

を用いることで、低電流での書込みを可能にした。

3.3 書込み電流の高効率スピントルク変換

STT-MRAMでは記憶素子への書込みは磁化を反転して行 うため,書込み電流をスピントルクへ効率よく変換することが 重要となる。書込み電流のスピントルクへの変換が不十分であ れば,図4(a)の左図のように、むだな電流が流れて書込み電流 は大きくなる。一方,図4(a)の右図のようにスピントルクへの変 換が十分になされれば、書込みに必要な電流は低減される。

書込み電流のスピントルクへの変換効率としてMR (Magneto-Resistance:磁気抵抗)比を指標とし,MR比に対する磁化反 転電流を見積もった結果を図4(b)に示す。MR比の値が100% 以上になると,磁化反転電流の低減率が減少傾向になる。更 に,低抵抗状態"0"から高抵抗状態"1"へ記憶素子に書き込 む際に必要な電流値が,高抵抗状態"1"へ記憶素子に書き込 む際に必要な電流値が,高抵抗状態"1"から低抵抗状態"0" へ書き込む場合の電流値より大きく,また,高MR比化による 書込み電流の低減率が低いことがわかる。高MR比化による 細化及びダンピング定数の低減に比べると,書込み電流低減 の効果は小さいと言える。しかし,記憶素子の高MR比化は 記憶素子に書き込まれた情報を読み出しやすくするため,読出 し時の低消費電力化が可能になる。消費電力が低い読み書 きを実現するためには,高MR比化も必要不可欠となる。

3.4 高速動作における低電流書込み

低ダンピング定数の材料で形成した垂直磁気トンネル接合 膜を,低ダメージプロセスにより30 nm以下に微細化すること で,低電流での書込みを可能にした。これらの技術を組み合

(注2) 2012年12月現在, 当社調べ。

わせて作製した記憶素子に対し,SRAM級の動作速度で書込みを実施した結果を図5に示す。

図5(a)の各点は、記憶素子の抵抗値を変えるために必要な 電流の平均値をプロットしている。安定した動作を保障するた め、電流の平均値に対して十分大きな書込み電流値を用いる 必要がある。そこで、書込み電流として3 ns 50 µA (図5(a)の ★印)を用い、記憶素子の磁化を反転させて高抵抗状態と低 抵抗状態を交互に切り替える試験を200回実施したところ、書 込みエラーがない安定した動作を確認した (図5(b))。STT-MRAMの記憶素子において、高速かつ低電流での書込みが 可能であることを実証した。

4 垂直STT-MRAMキャッシュメモリの性能

高速かつ低電流での書込みが可能な垂直磁気記憶素子を L2キャッシュメモリに用いて,**表1**に示す条件で消費電力低 減の効果を検証した。

STT-MRAMを用いて理想的なパワーゲーティング動作を 適用することで、動作速度をSRAMと同等に保持しながら、

⁽注3) Virtualizeは, Synopsys, Inc.の登録商標又は商標。

(注5) Linux は, Linus Torvalds氏の米国及びその他の国における登録商標。

消費電力を80%低減できることをシミュレーションにより示す ことができた⁽³⁾。

5 あとがき

高速書込みと低電流書込みの両立が可能なSTT-MRAM をL2キャッシュメモリに適用することで、アプリケーション動 作時においてもパワーゲーティングを用いることが可能にな り、動作速度を従来のSRAMと同程度に維持しながら消費 電力を80%低減できることが示された。

理想的には、CPUのクロックに追随できる高速駆動下において低消費電力で読み書き可能な不揮発メモリが必要である が、道のりはまだ長い。しかし、STT-MRAMの書込み電流 低減によって、キャッシュメモリの消費電力を低減できる可能 性が見えてきた。今後、低消費電力で動作可能なMRAMの 可能性を広げるため、消費電力の更なる低減が可能な記憶素 子の研究開発を推進する。

この研究開発の一部は,独立行政法人新エネルギー・産 業技術総合開発機構 (NEDO)の「ノーマリーオフコンピュー ティング基盤技術開発」プロジェクトにおいて実施したもので ある。

文 献

- 野村久美子他. 高速・低消費電力STT-MRAMキャッシュを用いた Run-time ノーマリオフプロセッサ. 東芝レビュー. 67, 9, 2012, p.48-51.
- (2) 奥田博明. 垂直磁化方式のMTJ記憶素子を用いたスピン注入書込みMRAM.
 東芝レビュー. 66, 9, 2011, p.20-23.
- (3) Kitagawa, E. et al. "Impact of ultra low power and fast write operation of advanced perpendicular MTJ on power reduction for high-performance mobile CPU". International Electron Devices Meeting 2012. San Francisco, CA, USA, 2012-12, IEEE. 2012, p.29.4.1–29.4.4.
- (4) Sun, J. Z. et al. Effect of subvolume exitation and spin-torque efficiency on magnetic switching. Phys. Rev. B 84, 2011, p.064413-1-9.

研究開発センター LSI 基盤技術ラボラトリー研究主務。 MRAMのデバイスプロセス及び材料の研究・開発に従事。 IEEE 会員。

Advanced LSI Technology Lab.

藤田 忍 FUJITA Shinobu

研究開発センター LSI 基盤技術ラボラトリー研究主幹。 不揮発性メモリの新領域開拓に向けた回路・システム応用の 研究・開発に従事。IEEE会員。 Advanced LSI Technology Lab.

伊藤 順一 ITO Junichi

研究開発センター LSI 基盤技術ラボラトリー主任研究員。 MRAMのデバイスプロセス技術の研究・開発に従事。応用 物理学会会員。

Advanced LSI Technology Lab.

⁽注4) ARM11は、EU及びその他の国におけるARM社の登録商標又は商標。