酸化物半導体 TFT を用いたシートディスプレイ

OLED Sheet Display Driven by Oxide Semiconductor Thin-Film Transistors

斉藤 信美	坂野 竜則	山口 —
SAITO Nobuvoshi	SAKANO Tatsunori	YAMAGUCHI Haiime

紙のような軽さ,薄さ,柔軟性を持ったディスプレイ(以下,シートディスプレイと呼ぶ)を実現するには,ディスプレイの基板 をガラスからプラスチックのような割れにくい材質に替える必要がある。しかし,プラスチック基板はガラス基板に比べて耐熱 性が低いため,各画素の表示を行う薄膜トランジスタ(TFT)を従来より低温で作製する必要がある。

東芝は、低温で形成しても高い電子移動度を示す酸化物半導体InGaZnO^(注1)を使用し、水素の挙動に着目してInGaZnO 膜質を改善することで、プラスチック基板上にガラス基板上の場合と同等の駆動信頼性を持つTFTを実現した。更にこの技術 を用いて、世界最大クラスとなる11.7型有機EL (Electroluminescence) シートディスプレイの試作に成功した。

In order to realize a sheet display with ultrathinness, light weight, and flexibility like that of paper, the glass substrate of display panels must be replaced by a material that is not easily broken such as a plastic substrate. However, it is difficult to achieve thin-film transistors (TFTs) with high mobility and stability on a plastic substrate because plastic films are generally less durable under high temperature than glass substrates.

To solve this issue, Toshiba has developed an indium gallium zinc oxide (InGaZnO) TFT with high mobility on a plastic substrate, whose stability is almost equal to that of an InGaZnO TFT fabricated on a glass substrate. This was realized by improving the quality of low-temperature-formed films. Using this technology, we have succeeded in fabricating an 11.7-inch organic light-emitting diode (OLED) sheet display.

1 まえがき

ー般にディスプレイは基板にガラスを用いているため,割れ 防止のために頑強な保護部材が必要になり,電子機器の厚さ や質量を増加させている。ディスプレイ用基板をガラスからプ ラスチックに替えることで保護部材を簡素化し,紙のように軽 くて薄くて柔らかいといった特長を持つシートディスプレイを 実現できる可能性がある。シートディスプレイは,スマートフォ ンやタブレットなどの薄型化や軽量化だけでなく,ポスターの ように壁に貼れるテレビの実現など,現在のディスプレイの利 用シーンを大きく変える可能性がある。

シートディスプレイの"軽,薄,柔"の特長を生かすには,表 示方式はバックライトが必要な液晶ディスプレイ(LCD)より も,有機ELディスプレイが好ましいと考えられる。LCDや有 機ELディスプレイでは,基板上にTFTをマトリックス状に形 成し,画素ごとに表示素子を駆動する。LCDではTFTを信 号電圧の読込みスイッチとして2値で動作させるのに対して, 有機ELディスプレイでは電流量を多値で制御するため,TFT にはより高い駆動能力(電子移動度)と連続駆動での特性の 安定性(駆動信頼性)が要求される。更に,プラスチック基板 はガラス基板よりも耐熱性が低いため,TFTを従来よりも低 い温度で形成する必要がある。

一般に低温で形成した膜ほど欠陥を多く含むため,TFTの 電子移動度や駆動信頼性が低下するという課題が生じる。国 立大学法人 東京工業大学の細野秀雄教授らは,酸化物半導 体InGaZnOは室温で作製しても有機ELシートディスプレイ用 TFTの駆動に求められる電子移動度である10 cm²/(V・s)以 上の値を示す,という特長を持つことを2004年に発表した⁽¹⁾。 この発表以降,次世代TFT材料としてディスプレイパネルメー カーを中心に活発な開発が進められ,国内のパネルメーカー から,ガラス基板上に形成されたInGaZnO TFTを用いた 高精細LCDが2012年に製品化された。しかし,InGaZnO TFTの駆動信頼性を確保するには400℃程度でのアニール が必要であり,耐熱性の低いプラスチック基板上に形成され たInGaZnO TFTで高い駆動信頼性を達成するのは困難で あった。

東芝は、シートディスプレイの実現に向けて InGaZnO TFT の開発を進めており、今回 InGaZnO TFT 中の水素の挙動に 着目して低温で形成する際の InGaZnO 膜質を改善した⁽²⁾⁻⁽⁴⁾。 その結果、プラスチック基板上に、ガラス基板上と同等の高 い駆動信頼性を備えた InGaZnO TFTを形成することに成 功した。更にこの技術を用いて、大型ガラス基板 (550× 670 mm) 対応の TFT 量産ラインを用いてプラスチック基板 上に InGaZnO TFT アレイを試作し、世界最大クラスとなる

 ⁽注1) 酸化インジウム (In₂O₃), 酸化ガリウム (Ga₂O₃), 及び酸化亜鉛 (ZnO) から成る複合酸化物の半導体。

11.7型有機ELシートディスプレイの動作を確認した。 ここでは、当社が開発したプラスチック基板上への高い駆 動信頼性を持つInGaZnO TFT作製技術と、試作した有機 ELシートディスプレイの特性及び仕様について述べる。

2 プラスチック基板上へのInGaZnO TFTの作製

TFT作製工程でのプラスチック基板の伸縮を抑制するとと もに、既存の大型ガラス基板用TFT量産ラインへの展開を容 易にするため、ガラスを支持基板として利用し、その上にポリイ ミド樹脂を塗布することでプラスチックフィルム基板を形成し た。5インチのポリイミドフィルム上に作製したInGaZnO TFT の構造を図1に示す。TFTは、エッチングストッパ膜を持つ逆 スタガ型ボトムゲート構造である。作製したInGaZnO TFTの 典型的な伝達特性を図2に示す。飽和領域(ドレイン電圧 $V_d = 15$ V)において電子移動度(μ_{sat})17.3 cm²/(V・s)、しき い値電圧(V_{th}) 0.86 V、サブスレショルド(SS)値0.21 V/dec (dec:decade)を示し、有機ELシートディスプレイの駆動に必 要な電子移動度と良好なスイッチング特性が得られた。

3 駆動信頼性の改善

有機ELシートディスプレイの要求仕様を満たす高い駆動信 頼性を確保するには、欠陥の少ないInGaZnO膜を作製するこ と、及び残存する欠陥を不活性化することが必要になる。

当社は、InGaZnO膜の形成条件と膜質に着目した。シリコ ン(Si) 基板上に形成したInGaZnO膜の走査型電子顕微鏡 (SEM) 画像を図3に示す。成膜圧力を下げて形成するほど、 InGaZnO膜は緻密になって膜の密度が単結晶に近づき、欠陥 の少ない膜になることが判明した。またアニール条件を検討 した結果、アニール処理によってInGaZnO膜や、隣接する ゲート絶縁膜及びエッチングストッパ膜などの絶縁膜に含まれ る水素が拡散し、InGaZnO膜中の欠陥を不活性化する働きが あることがわかった⁽⁵⁾(図4)。

これらの知見に基づいて、5インチのポリイミドフィルム上で InGaZnO膜とエッチングストッパ膜の成膜条件、及びアニール 条件の最適化を行った。TFTの駆動信頼性の評価手法であ るバイアス温度ストレス試験を行った結果を図5に示す。スト レス時間2,000秒において、試験前後でのV_{th}変動量が30 mV

Cross-sectional scanning electron microscope (SEM) images of InGaZnO films

特

Hydrogen termination of defects in InGaZnO film

未満に抑制され、最適化前の約1/7に改善された。この値は ガラス基板上に作製した場合とほぼ等しく、プラスチック基板 上に高い駆動信頼性を備えたInGaZnO TFTを形成できた。

4 有機 ELシートディスプレイの試作

プラスチック基板上へのInGaZnO TFTの作製技術を用い て、有機ELシートディスプレイの試作を行った。作製工程を 図6に示す。有機EL層の発光を基板側に取り出すボトムエ ミッション構造のため、ポリイミドフィルムには可視光波長域 で透明なものを用いた。

まず、ガラス支持基板 (550×670 mm) 上にポリイミド樹脂

を塗布形成し, その上にInGaZnO TFTアレイを作製した。 次に, RGB (赤, 緑, 青) のカラーフィルタを形成し, 続いてカ ラーフィルタ上に画素電極を形成した。更に発光領域を規定 するバンクを形成した後に, 白色有機EL層, 陰極, 及び封止 層を形成した。最後にガラス支持基板から剝離することで, 有機ELシートディスプレイを得た。ガラス支持基板から剝離 する前後でInGaZnO TFTの特性を評価した結果, 特性変化 がほとんどないことを確認した(図**7**)。

試作した11.7型有機ELシートディスプレイの外観を図8に, 主な仕様を表1に,それぞれ示す。画素数は960×540画素, 画素サイズ270×270µm,精細度94ppi (Pixel per Inch)で ある。画素回路は二つのトランジスタと一つのキャパシタから 構成され,開口率は42%である。有機EL構造はボトムエ ミッション構造であり,白色有機ELとRGBカラーフィルタに よってフルカラー表示した。ドライバICや駆動回路基板を除

集

図8. 試作した11.7型シート有機ELディスプレイ — プラスチック基板 上に作製したInGaZnO TFTアレイにより,世界最大クラスの有機EL シートディスプレイの駆動を行った。

11.7-inch prototype OLED sheet display driven by InGaZnO TFTs

項目	仕様	
対角サイズ	11.7インチ (297.2 mm)	
画素数	960×540画素	
画素サイズ	270×270 μm	
精細度	94 ppi	
基板	透明ポリイミドフィルム	
IFT	チャネル材料 InGaZnO エッチングストッパ型ボトムゲート構造	
画素回路	2トランジスタ+1キャパシタ	
j機 EL 構造	ボトムエミッション構造 白色有機 EL + RGB カラーフィルタ	
開口率	42 %	
重量	約10g*	
夏さ	約0.1 mm*	

いたディスプレイの厚さは約0.1 mm, 質量は約10gである。 また,曲率半径10mmで曲げた状態でも正常に表示できることを確認した。

5 あとがき

今回,低温で形成した酸化物半導体InGaZnOの膜質を改 善することで,有機ELシートディスプレイに適用できる高い 駆動信頼性を持ったInGaZnO TFTを,プラスチック基板上 に実現した。更に,既存の量産ラインを利用して,塗布形成 したプラスチック基板上にInGaZnO TFTを試作し,世界最 大クラスとなる11.7型有機ELシートディスプレイの駆動に成功 した。 今後も当社は、InGaZnO TFTの信頼性や均一性を改善す るとともに、紙のようなシートディスプレイの特長を生かして、 軽量・薄型化だけでなく新しい価値を提供する端末の創出を 目指して開発を進める。

謝 辞

11.7型有機ELシートディスプレイのTFTアレイ試作にあたり, ご協力をいただいた(株)ジャパンディスプレイの平松雅人氏 と石田有親氏に深く感謝いたします。

文 献

- Nomura, K. et al. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature. 432, 2004, p.488 - 492.
- (2) Yamaguchi, H. et al. 11.7-inch Flexible AMOLED Display Driven by a-IGZO TFTs on Plastic Substrate. SID Symposium Digest of Technical Papers. 43, 1, 2012, p.1002 - 1005.
- (3) Miura, M. et al. Low-Temperature-Processed IGZO TFTs for Flexible AMOLED with Integrated Gate Driver Circuits. SID Symposium Digest of Technical Papers. 42, 1, 2011, p.21-24.
- (4) Nakano, S. et al. Highly reliable a-IGZO TFTs on a plastic substrate for flexible AMOLED displays. Journal of the Society for Information Display. 20, 9, 2012, p.493 - 498.
- (5) Saito, N. et al. "Amorphous In-Ga-Zn-O TFTs with High Stability against Bias Temperature Stress". Proceedings of 17th International Display Workshops. Fukuoka, Japan, 2012-12, ITE and SID. 2010, p.1855 - 1858.

斉藤 信美 SAITO Nobuyoshi 研究開発センター 表示基盤技術ラボラトリー研究主務。 ディスプレイの研究・開発に従事。 Electronic Imaging Lab.

ディスプレイの研究・開発に従事。 Electronic Imaging Lab. 坂野 竜則 SAKANO Tatsunori, D.Eng.

研究開発センター 表示基盤技術ラボラトリー, 博士 (工学)。 ディスプレイの研究・開発に従事。 Electronic Imaging Lab.

Ц ф т E

山口 – YAMAGUCHI Hajime 研究開発センター 表示基盤技術ラボラトリー主任研究員。 ディスプレイの研究・開発に従事。SID 会員。 Electronic Imaging Lab.

