一般論文

低接触抵抗オーミック電極による Ka帯GaN HEMT 特性の改善

Power Characteristics of Ka-band GaN HEMT Improved by Lowering Ohmic Contact Resistance

森塚 真由美	高田 賢治	松下景一
MORIZUKA Mayumi	TAKADA Yoshiharu	MATSUSHITA Keiichi

化合物半導体である窒化ガリウム (GaN) を用いたHEMT (High Electron Mobility Transistor:高電子移動度トランジスタ) は、出力電力密度が高い高周波トランジスタとして、幅広い応用が期待されている。この素子を用いれば、これまで進行波管増幅器が搭載されてきたKa帯 (26~40 GHz)の衛星通信システムにも、固体電力増幅器 (SSPA: Solid State Power Amplifer)を組み込めるようになる。東芝は、この応用を目指した開発を進めており、出力電力20 WのKa帯GaN HEMTを2011年に報告した。

今回当社は,更に特性を改善するために,接触抵抗を低減するオーミック電極形成プロセスを開発した。このプロセスにより,接触抵抗は従来よりも56%低下し,31 GHzでの出力電力密度は11%増加した。Ka帯SSPAへの応用により,衛星通信システムの小型・軽量化が期待できる。

Gallium nitride (GaN) high electron mobility transistors (HEMTs) are expected to become a key technology for high-frequency devices due to their high output power density. GaN HEMT devices make it possible to install solid-state power amplifiers (SSPAs) in Ka-band (26-40 GHz) satellite communication systems as an alternative to conventional travelling wave tube amplifiers (TWTAs).

Toshiba has already developed a 20 W-class Ka-band GaN HEMT device. In order to further improve the Ka-band power characteristics, we have now developed an ohmic contact process for the GaN HEMT device that can reduce the ohmic contact resistance by 56%, and increase the output power density at 31 GHz by 11%. The newly developed device is expected to contribute to reductions in the size and weight of next-generation satellite communication systems.

1 まえがき

近年の半導体素子技術の進展により,高周波電力増幅器 の多くが,進行波管増幅器(TWTA:Travelling Wave Tube Amplifier)から,半導体素子を用いた固体電力増幅器(SSPA: Solid State Power Amplifier)に切り替えられてきた。この流 れは,通信や放送,レーダシステムなどの小型・軽量化と長寿 命化に大きく貢献した。しかし,これまでの半導体素子では 出力電力が不十分であるために,現在でもTWTAが使用さ れるシステムがある。Ka帯(26~40 GHz)の衛星通信システ ムは,その一つである。

窒化ガリウム (GaN) は、シリコン (Si) やヒ化ガリウム (GaAs) などの従来の半導体に比べて、エネルギーバンド構造におけ る禁制帯幅が広い。そのため、耐圧が高く、従来よりも高い 動作電圧の電子デバイスを作製できる。また、窒化アルミニウ ム (AIN) との混晶であるAlGaNとGaNは、良好な接合面を 形成でき、この界面に高密度に蓄積する、移動度の高い電子 を利用できる。このAlGaN/GaN接合を利用したGaN HEMT (High Electron Mobility Transistor:高電子移動度トランジ スタ) は、出力電力密度の高い高周波トランジスタとして、幅広 い応用が期待されている。 東芝は、内部整合型電力GaN HEMTとして、X帯(8~ 12 GHz)で出力50 Wの素子を2006年に、Ku帯(12~18 GHz) で出力50 Wの素子を2007年に、更にC帯(4~8 GHz)で出力 120 Wの素子を2009年に、それぞれ実用化してきた。現在は、 更に周波数の高いKa帯で、出力が15 W以上となるGaN HEMT の研究開発を行っており、出力電力20 Wを確認したことを 2011年に報告した⁽¹⁾。

Ka帯の素子は、これまでのC~Ku帯の素子に比べて、電 極長や電極間隔をいっそう縮小している⁽¹⁾。また、15 W以上 の出力を得るために、微細化された素子を数多く束ねて動作 させる。これらの素子は特性をそろえることが必須であり、素 子形状には高い均一性が求められる。このため形状加工に は、加工精度が高く均一性に優れた、ドライプロセスを採用し た。しかし、このプロセスは半導体表面に強い影響を与えて 素子特性を劣化させやすく、Ka帯GaN HEMTは、C~Ku 帯のGaN HEMTに比べて、接触抵抗が約4倍に高くなるとい う問題が生じていた。

今回当社は、Ka帯GaN HEMTに適用できる、接触抵抗 が低く、しかも加工精度と均一性に優れたオーミック電極形 成技術を開発した。この技術を用いて、ゲート長が0.2 µmの GaN HEMTを作製し、31 GHzの高周波出力特性を評価し て,出力電力や電力付加効率,利得の特性が向上したことを 確認した。

ここでは、今回開発した新しい電極形成技術と、これを用いたGaN HEMTの特性について述べる。

2 従来プロセスの課題と対策

Ka帯のGaN HEMTの断面構造を図1に示す。この素子 は炭化ケイ素 (SiC) 基板の上に、厚さ1.7 μ mのGaN層と、15 nm の薄いAlGaN層が積層されている。AlGaN層の表面に、窒 化ケイ素 (SiN_x)の保護膜を形成した後、その一部を開口して オーミック電極であるソース電極とドレイン電極、及びゲート電 極を形成する。ゲート電極の長さは0.2 μ mであり、この電極 とソース電極との間隔は1 μ m、また、ドレイン電極との間隔は 2.5 μ mである。15 W以上の出力を得るために、このような構 造の、ゲート幅 (図1の奥行き方向の幅)が50 μ mとなる素子 を、128本束ねる (図**2**)。

電極を形成するための,保護膜を開口する工程には,フッ素 (F)系のガスを用いたドライエッチング技術を採用してきた。

図1. Ka帯GaN HEMTの断面構造 — ゲート長は0.2 µm, ゲートと ソースの間隔は1 µmと微細な構造である。Al_{0.3}Ga_{0.7}N層の厚さは15 nm と極めて薄い。

Cross-sectional structure of Ka-band GaN HEMT

この技術は、これまでのC~Ku帯の素子作製に使われてき たウエットエッチング技術に比べて、開口部の形状を、精度よ く、均一に作製できる点で優れている。しかし、この技術を用 いた電極の接触抵抗の値は0.87Ωmmと高い値であった。

このドライエッチング技術に類似したF系ガスによるプラズ マ処理で、窒化物表面にFが取り込まれ、ドレイン電流のしき い値電圧が上昇することが報告されている^{(2), (3)}。また、当社で も、このドライエッチング技術をゲート電極形成のための保護 膜開口に使用すると、しきい値電圧が上昇することを確認して いる。これらのことから、保護膜開口のプロセスで、AlGaN 表面にFが取り込まれ、F⁻のイオンとなって蓄積することで、 オーミック接触抵抗が増大していると考えた。そこで、AlGaN のFを含む部分をエッチングすることで、接触抵抗を低減でき ると予測した。

3 AlGaN層のエッチング

AlGaN層をエッチングするにあたり,接触抵抗を低減するた めの適切なエッチング深さを知る必要がある。AlGaN層の厚 さはわずか15 nmであるため,このエッチングには精密な深さ 制御が必要である。更に,良好なオーミック接触を得るため に,エッチング後の表面が平たんであることも必要である。こ のような条件を満たすエッチング技術として,塩素系のガスを 用いたICP-RIE (Inductively Coupled Plasma-Reactive Ion Etching)を採用した。エッチングの速度,エッチング表面の 平たん性,及びエッチング後の表面に残る不純物濃度を調査 して,最適のエッチング条件を選択した。

エッチング深さに対する接触抵抗を評価した結果を図3に 示す。試料は,通常のKa帯GaN HEMTプロセスと同様に, 保護膜を形成して,F系ガスでこの保護膜を開口した後,塩素 系ガスのICP-RIEでAlGaN層をエッチングした。

エッチング深さは、エッチング時間により制御した。図3に 示すように、エッチング深さが3nmのときの接触抵抗は 048 Ωnmとなり、従来の値に比べて45%低下した。エッチング 深さを5nmとすると、接触抵抗は更に低下して0.38 Ωmmと なり、従来プロセスより56%低下した。低下の度合いは、こ の5nmで飽和の傾向を示しており、適切なエッチング量は 5nmと判断した。

エッチングの深さと平たん性を確認するために,断面を透過 型電子顕微鏡 (TEM) により観察した。エッチング深さが 3 nmの場合のTEM画像を図4に示す。エッチング深さは期 待された値となっており,オーミック電極との接触面も平たん であることを確認した。

4 接触抵抗低減によるGaN HEMT 特性の向上

3章で述べたオーミック電極形成技術を用いて, Ka帯の GaN HEMTを作製し, その特性を, 従来プロセスで作製し た素子特性と比較した。

ドレイン電圧に対するドレイン電流特性を図5に示す。試 料は、ゲート幅が50 µmの素子を2本束ねた素子とした。 ゲート電圧が0Vで、ドレイン電圧が5Vでの電流を飽和電流 として、二つの測定値を比較すると、今回開発したプロセスで の値は、従来プロセスの値より12%増大している。また、ドレ イン電圧が低い領域の、電流の立ち上がりも急しゅんである。 一方、ドレイン電流のしきい値電圧を、ドレイン電圧5Vの条 件で比較すると、どちらも-2.5Vであり、変動していないこと を確認した。

Ka帯での基本的な素子特性を評価するために,素子から 見た信号源側のインピーダンスと負荷側のインピーダンスを調 整できるソースプル ロードプル評価装置を用いて,31 GHzで の特性を評価した。高周波入力を与えるバイアス点は,ドレ

イン電圧を24 V,ドレイン電流を飽和電流の1/10とした。信 号源側のインピーダンスは利得が最大となる条件,負荷側のイ ンピーダンスは電力付加効率が最大となる条件とした。入力 電力に対する出力電力,利得,及び電力付加効率を図6に示す。 今回開発したプロセスで作製した素子の,入力電力が小さい 領域の利得である線形利得は11.4 dBであり,従来プロセスよ り0.5 dB高い結果であった。また,電力付加効率の最大値は 45%であり,従来プロセスの素子より2ポイント上昇した。 ゲート幅1 mm当たりの出力電力密度は,電力付加効率が最 大となる条件で5.1 W/mmであり,従来プロセス素子よりも 11%高い値であった。これらの結果から,開発したオーミック

Power characteristics at 31 GHz

電極形成技術は、Ka帯のパワー特性の向上に効果があることを確認した。

5 あとがき

Ka帯のGaN HEMTの特性を向上させるために、新たな オーミック電極形成技術を開発し、接触抵抗を低減した。こ の技術は、高い加工精度と均一性が不可欠である出力電力を 15 W以上とするKa帯GaN HEMTの形成プロセスに, 容易 に組み込める。このオーミック電極形成技術は、AlGaN層表 面をエッチングするが、エッチング深さに対する接触抵抗を評 価し, 適切なエッチング深さを明らかにした。この電極形成技 術により、接触抵抗を、従来よりも56%低減できた。また、こ の技術を適用したKa帯GaN HEMTの飽和電流は、従来プ ロセスの素子より12%増大した。31 GHzでのパワー特性は, 線形利得が0.5 dB, 電力付加効率が2ポイント, 出力電力密 度が11%,向上した。これらの結果から、今回開発した電極 形成技術は、Ka帯GaN HEMTの特性改善に有効であるこ とがわかった。今後, 改善された Ka帯 GaN HEMT が, 衛星 通信用のSSPAに応用され、システムの小型・軽量化に寄与す ると期待される。

文 献

- (1) 松下景一 他. Ka帯20WGaN電力HEMT. 東芝レビュー. 66, 5, 2011, p.42-45.
- (2) Osvald, J. et al. C-V characteristics of SF_6 plasma treated AlGaN/GaN heterostructures. Microelectronic Engineering. **87**, 11, 2010, p.2208 2210.

会,電子情報通信学会会員。 Electron Devices Lab. 高田 賢治 TAKADA Yoshiharu

研究開発センター 電子デバイスラボラトリー研究主務。 GaN電子デバイスの研究・開発に従事。応用物理学会会員。 Electron Devices Lab.

森塚 真由美 MORIZUKA Mayumi, D.Eng. 研究開発センター 電子デバイスラボラトリー主任研究員,工博。

化合物半導体電子デバイスの研究・開発に従事。応用物理学

松下 景一 MATSUSHITA Keiichi

社会インフラシステム社 小向事業所 マイクロ波技術部主務。 マイクロ波半導体及び半導体プロセスの設計・開発に従事。 応用物理学会会員。 Komukai Complex