インクジェット工程の信頼性を向上させる in-situ気泡検出技術

Bubble Detection Technology for Piezo-Driven Inkjet Heads to Improve Reliability of Inkjet Process

佐藤	強	添田	勝之
SATO Tsuyoshi		SOEDA Katsuyuki	

半導体や液晶ディスプレイ (LCD) などの電子デバイス分野において, むだを出さない製造技術としてインクジェット (以下, IJと略記) 法に注目が集まっている。しかし, 量産における吐出安定性の実現が難しいことから, 製造ラインへ導入された例は いまだに少ないのが現状である。

東芝は、産業用途で多く用いられる圧電式IJヘッドを対象として、アクチュエータである圧電素子を音響センサとしても使用 することで、ヘッド内の気泡の存在をin-situ (その場)かつリアルタイムに検出できる吐出異常検知技術を開発した。これに より、IJ工程の信頼性の大幅な向上が期待できる。

In the manufacturing of electronic devices including semiconductors and flat panel displays, the inkjet method has been attracting increasing attention as a technology to minimize material loss. However, the inkjet method has not been widely used in mass-produced manufacturing lines due to the difficulty of achieving jetting stability control in piezo-driven inkjet heads.

Toshiba has developed a jetting failure detection unit and a detection algorithm that actualize real-time in-situ monitoring of all jetting and improve the reliability of the inkjet process by the use of piezo actuators in the piezo-driven inkjet heads as sensors to detect jetting failures caused by air bubbles.

1 まえがき

近年,製造コスト低減への要求が強まる電子デバイス分野で は,最小限の材料を必要な場所に直接供給できるIJ法への期待 が高まっている。しかし,量産ラインに適用された例は,LCD の配向膜やカラーフィルタの製造など,いまだに少ないのが現 状である。その理由の一つは,ヘッド内部に存在する気泡に よってしばしば吐出異常が発生し,量産における吐出安定性を 実現するのが難しいことにある。

従来は吐出状態を確認するために,塗布前にCCD (電荷結 合素子)カメラによって液滴の飛翔(ひしょう)状態を確認する 方法や、ガラス基板にあらかじめ塗布を行い液滴の位置や直 径のばらつきを統計処理する方法、塗布後に光学センサなど によって塗布状態を確認する方法などが採用されてきた。し かし塗布前後の確認だけでは,配管経路内の微小気泡が合 体して大型化する場合や,超音波照射場となるインク室におい て気泡が徐々に大型化する現象(Rectified Mass Diffusion)⁽¹⁾など、塗布中に発生する吐出異常に対応できず,いった ん吐出異常が発生すると検査工程で発見されるまで不良品を 作り続けてしまう問題があった。

IJ技術を産業分野へ本格的に展開するためには、塗布中に IJヘッド内に存在する気泡を高精度に検出し、即座に気泡排 出動作(回復動作)、あるいは不吐出箇所への追加塗布動作 (リペア動作)に移ることのできる新しいIJ塗布装置(図1)が 求められている。

そこで東芝は、IJヘッド内にµmオーダーの気泡を人為的に 生成する方法を開発し、ヘッド内の気泡の挙動を詳細に観測し た。その知見を基に、ヘッド内の気泡をin-situかつリアルタイ ムに検出し、吐出異常の発生箇所を特定できる吐出異常検知 技術を開発した。ここでは、その技術の概要について述べる。

2 吐出異常検知の概要

2.1 検出原理

圧電式IJヘッドの構造を図2(a)に示す。電圧が印加される と圧電素子が伸縮し、これに連結されたダイヤフラムが振動し

てインク中に圧力波が発生する。この圧力波はノズル側に伝 搬し気泡周辺の圧力を変化させ(b)に示す気泡振動を励起す る。この気泡からの放射音圧によって(c)に示す電圧波形の残 留振動部分に生じた変化を,後述する吐出異常検知ユニット (以下,検知ユニットと略記)で検出して気泡の有無を判定する。

2.2 検知ユニットと検出アルゴリズム

検知ユニットのシステム構成を図3に示す。高速処理を実 現するために、FFT (高速フーリエ変換)演算や、正常吐出と 異常吐出の判定処理などをロジック回路で実行している。駆 動電圧の立ち上がりから約230 µs後にデジタルIO (入出力) を通じて判定結果を出力でき、FPD (Flat Panel Display)分 野で想定している吐出間隔 (286 µs) に対して十分に高速な判 定性能を備えている。

実際のIJ工程に導入する際の用途に応じて、標準型と簡易

型の2種類の検知ユニットを開発した(図4)。標準型は, IJ 塗布装置の装置制御部と協調制御を行うので, CPCI (Compact Peripheral Component Interconnect) 規格の19インチ ラックに格納できる外形寸法484 (幅) × 332 (高さ) × 357 (奥 行き) mmとした。全液滴に対するリアルタイム検出機能 (最 大検出周波数3.7 kHz) と, 吐出異常の発生箇所を特定できる 機能を持つ。これに対して簡易型は, インク充塡作業後の吐出 状態の確認など, 主にオフライン作業で使用することを目的と し, 標準型からリアルタイム検出機能を省いて大幅な小型化 (外形寸法260 (幅) × 43.6 (高さ) × 208 (奥行き) mm) と低コ スト化を実現した。

検出アルゴリズムについては、電圧波形のばらつきの影響 を抑えるために、電圧波形をフーリエ変換し、周波数領域にお いて機械振動系の固有振動数(46 kHz)にしきい値を設ける 方法を採用した。また、残留振動波形の取得条件や判定条 件を変更するため、汎用性の高いアプリケーションソフトウェ アを開発した。前述の検出アルゴリズム以外に、時間領域と 周波数領域の複数のアルゴリズムを実装しており、それらの結 果を論理演算して判定精度を上げる機能も持つ。その他、多 い時には一万個を超えるノズルに対し、自動で判定基準値を 設定する機能を持っている。このソフトウェアの操作画面と判 定結果をマップ出力した例を図5に示す。

Examples of application software displays

3 IJ ヘッド内における気泡評価

3.1 レーザによる気泡生成

吐出異常の検出精度を高精度化するためには、大きさと位 置が異なる気泡をIJヘッド内に配置し、圧電素子からの出力 電圧との関係を詳細に把握することが重要である。そこで、 内部を観察できるガラス製のノズルプレートを持つIJヘッド内 にグリセリンと水が主成分のダミーインクを充塡し、その中に 半径数μm~数十μmの気泡を人為的に生成する方法を開発し た⁽²⁾ (図6)。波長355 nmのレーザ(Nd:YVO4の第3高調波) を使用し、ノズルを上向きに設置してレーザ光をノズル側から照 射し微小気泡を生成した。そして、図6(b)に示すように超音波を 照射して、気泡間に作用する力 (Secondary Bjerknes Forces)^{(1), (3)}によって気泡どうしを接近させ、それらが合体すること を利用して気泡サイズを制御した。

この方法によって気泡を大型化した結果を図7に示す。気泡 の位置とサイズを変化させて、電圧波形との関係を詳細に調査 した結果、気泡の滞留位置によって特徴的な波形変化が生じる ことがわかった。また、気泡サイズの検出範囲も把握できた。

3.2 IJヘッド内での気泡の移動

ノズルを上にして設置したヘッド内に気泡が存在する場合, 浮力によって気泡は上昇し,やがて速度の二乗に比例して下 向きに働く抵抗力と重力が,浮力とつり合って終端速度で上昇

する。しかし,超音波照射場では,膨張と収縮を繰り返す気 泡の呼吸振動と超音波照射場とが相互に作用することで,気 泡には並進運動を起こす力 (Primary Bjerknes Forces)⁽¹⁾が 働く。この力は,共振気泡半径 (超音波振動により振幅が最 大となる平衡状態での気泡半径)より気泡が小さい場合には 気泡を圧力定在波の腹に移動させ,大きい場合には節に移動 させる性質を持つ。今回は,ヘッド内の超音波振動数 (46 kHz)から共振半径は約65 µmとなり,これ以下の大きさ の気泡は,図8に示すように浮力に逆らって圧力分布の腹が あるダイヤフラム側に下降する。このようにIJヘッド内では, 条件がそろうと気泡が比較的長距離を移動する。

4 吐出異常の検出実験

実験環境を図9(a)に示す。IJ ヘッドを固定し, XY ステージ にガラス基板を吸着して相対移動させ, Y方向に液滴を200個 塗布した。ノズルは4個使用し, X方向のピッチは630 µm, Y 方向のピッチは210 µmである。塗布中にIJ ヘッドとインクタン クをつなぐ配管に振動を与えて, 気泡をノズルから混入させ た。そして, 基板上の液滴の画像処理結果と検知ユニットの 判定結果を比較して検出性能を検証した。

画像処理によって液滴の位置と径を求めた結果を図9(b)に 示す。ユニット1のノズルは、今回の実験の前に不吐出になっ ており、加圧パージによって気泡を除去し吐出可能となったが

初期状態から他のノズルに比べ位置ばらつきが約20倍も大き かった。図10に示すように,残留振動波形のFFTの結果が 不吐出の結果に近いことから,ヘッド内に気泡が残留していた 可能性が高い。検知ユニットを塗布前に使用して残留気泡が 検出できれば,位置精度の悪い状態で使用することがなくな り,不良発生を未然に防ぐことができる。

また,塗布中に配管に振動を与えたので気泡がヘッド内に入り込み,図9(b)に示すように全ノズルで不吐出が発生した。基板上の吐出状態と検知ユニットの判定結果を比較したところ,塗布前から吐出異常と判定されていたユニット1以外は不吐出の発生場所をリアルタイムで正確に検知できていた。このとき

の電圧波形をFFT処理した結果を図11に示す。46 kHz付 近に適切なしきい値を設けることによって、気泡の有無が正確 に判定できることがわかる。

5 あとがき

超音波照射場となるIJヘッド内には、気泡のサイズと位置を 変化させるメカニズムが存在している。したがって、気泡のサ イズや位置の正確な測定よりも、吐出性に影響を及ぼす大きさ の気泡を確実に検出することが重要である。

今回, IJヘッド内の気泡をin-situかつリアルタイムで検出 し, 異常の発生箇所を特定できる吐出異常検知技術を開発し た。今後は電子デバイスの製造ラインへの適用を進めていく。

文 献

- Leighton, T. G. The Acoustic Bubble. USA, Academic Press, 1997, 609p.
- (2) 佐藤 強他. 液滴塗布ヘッド内におけるレーザ生成気泡の挙動観測. 精 密工学会誌. 75, 2, 2009, p.1470 - 1475.
- (3) 藤川貴彬 他. 超音波駆動された二気泡間に働くsecondary Bjerknes force に関する実験的検討. 電子情報通信学会技術研究報告. 108, 19, 2008, p.45-50.

佐藤 強 SATO Tsuyoshi

生産技術センター プロセス研究センター主任研究員。 電子デバイス向け塗布技術の開発に従事。精密工学会会員。 Process Research Center

添田 勝之 SOEDA Katsuyuki 生産技術センター 制御技術研究センター研究主務。

半導体・液晶プロセスの流体シミュレーション技術の開発に 従事。応用物理学会会員。 Control Technology Research Center