MONOS技術を用いたNAND型フラッシュメモリでの 読出し電流の安定化技術

Technologies for Stability of Readout Current in MONOS-Type NAND Flash Memories

藤木	潤	安田	直樹	村岡	浩一
FUJIKI Jun		YASUDA Naoki		MURAOKA Koichi	

東芝は、次世代以降のNAND型フラッシュメモリの一つとして、MONOS (metal-oxide-nitride-oxide-silicon) 技術を検討している。書込み・消去性能の向上のため、リーク電流を阻止するブロック絶縁膜として高誘電率 (High-k)材 料を使うと、High-k 絶縁膜中の遅い分極成分によってメモリセルトランジスタ (以下、メモリセルと略記)のチャネル電流が 変化し、データの読出しが不安定になる。今回当社は、ブロック絶縁膜の構造とデータの読出し方式の工夫でこの問題を解決 した。ブロック絶縁膜として、従来の酸化アルミニウム (Al₂O₃) 単層膜に代わり、Al₂O₃にシリコン酸化膜 (SiO₂膜)を挟んだ Al₂O₃/SiO₂/Al₂O₃積層膜 (以下、AOA 膜と略記)を使った。また、各メモリセルにプレバイアス電圧を印加した後、データを 読み出す方式にした。その結果、メモリセルのチャネル電流を安定化させ、信頼性の高いデータ読出しを実現した。

Toshiba has been engaged in research and development aimed at realizing a metal-oxide-nitride-oxide-silicon (MONOS)-type memory as a promising candidate for the next-generation NAND flash memory and beyond. Instability of data readout often occurs in a MONOS-type memory, caused by transient response of the channel current due to slow polarization in the high-k dielectric material that serves as a blocking layer to improve programming and erasing operations.

As a solution to reduce the transient response of channel currents, we have developed both a new blocking layer structure composed of an aluminum oxide (Al₂O₃/silicon dioxide (SiO₂)/Al₂O₃ (hereafter referred to as "AOA") stacked blocking layer instead of the conventional Al₂O₃ single layer, and a new operation architecture comprising an intelligent reading scheme with appropriate pre-bias voltage application before reading. These technologies achieve stability of the channel current in MONOS-type memory cell transistors and highly reliable readout of data.

1 まえがき

東芝は,次世代以降のNAND型フラッシュメモリの商品化 を目指し,微細化ができ、3次元化も容易なMONOS型メモリ を検討している^{(1), (2)}。MONOS型メモリセルでは、トンネル絶 縁膜,電荷蓄積層、ブロック絶縁膜が積層している(**図1**)。 メモリセルでの書込みや消去は、トンネル絶縁膜を介して電 荷蓄積層に電荷をためることで行われる。その際、ブロック 絶縁膜はゲート電極に電荷が漏れるのを防ぐ働きをするため、 ブロック絶縁膜としてHigh-k材料を用いることが望ましい。 一方で、High-k絶縁膜は"遅い分極成分"を持つことが知ら れている⁽³⁾。この分極は電圧印加時に現れる可逆的なもので あるが、High-k絶縁膜の容量を過渡的に変え、それに伴って メモリセルのチャネル電流(図1)も変化する⁽⁴⁾。チャネル電流 が時間とともに変わると、メモリセルのデータ読出し時にしき い値電圧、つまりトランジスタがオンになる電圧の判定が不安 定になってしまう。

当社は, High-k絶縁膜の遅い分極成分がメモリセルのデー タ読出しに対してどの程度の影響を与えるかを定量的に評価 するとともに, データ読出しの不安定性という問題の解決策 を, ブロック絶縁膜の構造とデータ読出し方式の両面から検 討した。ここでは, その概要と結果について述べる。

2 メモリセルの読出し電流の過渡応答

NAND型フラッシュメモリのデータ読出し時には、NAND 列を構成するそれぞれのメモリセルに読出し電圧 (V_{read})を順 番に印加していく (**図2**(a))。また、 V_{read} を印加するセル以外 には、NAND列を電気的に導通させるためのパス電圧 (V_{pass}) を印加する。そのため、各メモリセルの読出し前に V_{pass} がど

図2. 読出し電流の過渡応答の測定法 — 一つのメモリセルに対して V_{pass}を印加しチャネル電流の時間変化を測定することで、V_{read}の前に印加される V_{pass}の影響を評価できる。

Method of measuring transient response of readout current

の程度かかっていたかでHigh-k絶縁膜の遅い分極の誘起量 が異なり、結果としてメモリセルのチャネル電流がセルごとに 変わってしまう。

このようなNAND列のV_{pass}の履歴の影響は、一つのメモリ セルに対してV_{pass}を印加し、チャネル電流の時間変化を測定す れば評価できる(図2(b))。ここではHigh-k絶縁膜の遅い分極 の影響が最大でどの程度かを見積もるために、ステップ電圧を 印加し、メモリセルのチャネル電流を測定した(図3)。更に、 High-k絶縁膜の分極の誘起量は初期電圧と測定電圧V_{meas}の

図4. ブロック絶縁膜にSiO2を用いたメモリセルでのチャネル電流の 過渡応答 — メモリセルにステップ電圧を印加したとき、ブロック絶縁膜 にSiO2を用いた場合はチャネル電流が一定になった。 Transient response of channel current in memory cell with SiO2 blocking laver

差で決まることを考慮し、測定前にホールド電圧 (V_{hold})を印加した。

ここで用いたブロック絶縁膜は Al₂O₃ であり、メモリセルは ゲート/Al₂O₃/シリコン窒化 (Si₃N₄) 膜/SiO₂/Siというスタッ ク構造をしている。図3に示すチャネル電流の過渡応答では、 V_{hold} に応じて初期電流は異なるが、最終的にチャネル電流は V_{meas} で決まる一定の電流値に落ち着く。測定時間100 ms内 の電流変化をメモリセルのしきい値電圧の変動量 (ΔV_{th}) に 換算すれば、1 Vのステップ電圧幅当たりの ΔV_{th} が0.08 Vと なった。NAND列で使う V_{pass} は数Vのオーダであることを考 えればこの ΔV_{th} の値は無視してよいものではなく、メモリセル の過渡的な電流変化を抑制する必要がある。

次に過渡電流の原因を調べるため、ブロック絶縁膜をAl₂O₃ からSiO₂に置き換えたメモリセル (ゲート/SiO₂/Si₃N₄/SiO₂/ Si) で同様の測定を行ったところ、メモリセルのチャネル電流 は一定であり、過渡応答はまったく見られなかった (**図4**)。この 結果から、チャネル電流の時間変化はブロック絶縁膜のAl₂O₃ に起因することが明らかになった。念のために、ブロック絶縁 膜はAl₂O₃であるが、電荷蓄積層のSi₃N₄膜がない試料 (ゲー ト/Al₂O₃/SiO₂/Si) でもチャネル電流の時間変化を評価した ところ、図3と同様の過渡応答が現れた。すなわち、Al₂O₃ブ ロック絶縁膜の有無とメモリセルのチャネル電流の過渡応答 とが対応していることを確認できた。

3 AOA 膜による電流の安定化

メモリセルのチャネル電流を安定化するための方法の一つ として、ブロック絶縁膜の構造を改良した。その際、High-k絶 縁膜の分極量は膜の体積に比例することに着目して、High-k 絶縁膜の厚さは減らすが、ブロック絶縁膜としてのリーク電流 の低減性能を落とさないように工夫した。

図5. Al₂O₃単層膜とAOA膜の電流密度-電界特性 — AOA膜では、 高電界領域だけでなく低電界領域でも、Al₂O₃単層膜以上にリーク電流 が抑制される。

Relationship between current density and electric field of AI_2O_3 single layer and AOA stacked blocking layer

ブロック絶縁膜のリーク電流は電子注入端の性質(バリア 性)で決まるので、膜の上下にはHigh-k材料のAl₂O₃を配置 し、膜の中間部にはHigh-k材料の体積低減のためにSiO₂を 挟んだAOA 膜を形成した。この積層膜のトンネル電流を計 算すると、電子注入端から離れた位置にあるSiO₂も電位障壁 になるため(**図5**(b)), AOA 膜ではAl₂O₃単層膜以上のリーク 電流の抑制効果を期待できることがわかった。

図5に示す電流密度-電界特性から、AOA 膜ではAl₂O₃単 層膜と比べて高電界領域の電流が約0.5けた減少するととも に、低電界領域の電流も約1けた減少するという良好な特性 が得られた。更に、この2種類の絶縁膜で容量の周波数依存 性を測定すると(図6)、AOA 膜はAl₂O₃単層膜に比べて容量 の周波数分散が小さく、AOA 膜が遅い分極の少ない絶縁膜 であることを示している。

次に、Al₂O₃単層膜,及びAOA膜をブロック絶縁膜に用いたメモリセルを作製した。**図7**に示すようにブロック絶縁膜に AOA膜を使うと、電気的な膜厚は変えずにメモリセルの物理

図7. ブロック絶縁膜にAl₂O₃単層膜とAOA膜を用いたメモリセルの 断面TEM (透過型電子顕微鏡)像 — AOA 膜を用いると、電気的な膜厚 は変えずに、Al₂O₃単層膜の場合より薄い物理膜厚を実現でき、メモリセ ルの微細化に有利である。

Cross-sectional transmission electron microscope (TEM) images of MONOS-type memory cells with Al_2O_3 and AOA as blocking layers

膜厚を薄くできるので、メモリセルの微細化に有利である。こ のAOA 絶縁膜を用いたメモリセルにステップ電圧を印加し、 チャネル電流の過渡応答を調べた結果を図8に示す。ブロック 絶縁膜がAl₂O₃単層膜の場合(図3)と異なり、AOA 膜を用い たメモリセルはチャネル電流の経時変化を起こさないことがわ かった。

4 プレバイアス電圧印加による電流の安定化

メモリセルのチャネル電流の過渡応答を抑えるためのほかの 方法として、データ読出しの動作方式からのアプローチも考え られる。図9に示すように、連続するV_{pass}をメモリセルに印 加すると、チャネル電流が少しずつ大きくなる。これは、V_{pass} の履歴(時間積算)によってHigh-k絶縁膜の遅い分極が徐々 に形成されるためである。

そこで、NAND列のデータ読出し動作前に,あらかじめ、読出 し時のV_{pass}の時間平均に相当するプレバイアス電圧(V_{pre})を

凶9. Al2U3 単層ノロック膜のメモリセルに Vpass を印加した場合のチャネル電流過渡応答 — 連続する Vpass をメモリセルのゲートに印加すると、その時間積算によって High-k 絶縁膜の遅い分極が徐々に形成され、チャネル電流が少しずつ大きくなる。

Transient response of channel current in memory cell with Al_2O_3 blocking layer when pulse voltages are applied

各メモリセルに印加しておく(図10)。プレバイアスによって High-k材料の遅い分極を読出し前に誘起しておくことができ るため、その後のNAND列のデータ読出し時にV_{pass}を繰り返 し印加してもHigh-k材料の分極は均衡状態を保ち続け、メモ リセルのチャネル電流の時間変動を抑制できる。

この考え方に基づいて、ブロック絶縁膜が Al_2O_3 単層膜の メモリセルに V_{pre} を印加し、続いて32個の連続する V_{pass} (6 V)を 印加し、この V_{pass} の印加時間内のチャネル電流の変動量を評価した(**図11**)。電流変動量は V_{pre} の大きさに依存し、ちょう $U_{\text{pre}}=3$ Vのときにメモリセルの電流変動量がゼロになった。この電圧($V_{\text{pre}}=3$ V)は、読出し時の V_{pass} の時間平均と一致している。このようにして、 V_{pre} 印加でメモリセルのチャネル電流を安定化できることを実証した。

5 あとがき

当社は、High-k絶縁膜をブロック絶縁膜として用いるMONOS 型メモリで安定したデータ読出しを実現する方法を、ブロック 絶縁膜の構造と読出し動作方式の両面から検討し実証した。

ブロック絶縁膜の構造としては、従来のAl₂O₃単層膜の代わりにAOA 膜を用いることで、メモリセルの過渡的な電流変化を抑制した。また、読出し動作方式として、NAND列に印加する V_{pass}の時間平均に相当する V_{pre}をあらかじめ印加しておくことで、安定したチャネル電流が得られた。この二つの方法を用いると、MONOS型メモリで安定したデータ読出しを行うことができる。

文 献

- Yaegashi, T., et al. "20 nm-node Planar MONOS Cell Technology for Multilevel NAND Flash Memory". 2009 Symposium on VLSI Technology. Kyoto, 2009-06, IEEE. 2009, p.190 - 191.
- (2) Sakamoto, W., et al. "Reliability Improvement in Planar MONOS Cell for 20 nm-node Multi-Level NAND Flash Memory and beyond". International Electron Device Meeting (IEDM) Technical Digest. Baltimore, MD, 2009-12, IEEE. 2009, p.831-834.
- (3) Lee, B., et al. Dielectric relaxation of atomic-layer-deposited HfO₂ thin films from 1 kHz to 5 GHz. Applied Physics Letters. 87, 1, 2005, p.012901 – 012903.
- (4) Fujiki, J., et al. "Successful Suppression of Dielectric Relaxation Inherent to High-k NAND from Both Architecture and Material Points of View". International Electron Device Meeting (IEDM) Technical Digest. Baltimore, MD, 2009-12, IEEE. 2009, p.952 - 954.

藤木 潤 FUJIKI Jun

研究開発センター LSI 基盤技術ラボラトリー。 次世代メモリに関する研究・開発に従事。応用物理学会会員。 Advanced LSI Technology Lab.

安田 直樹 YASUDA Naoki, Ph.D.

研究開発センター LSI基盤技術ラボラトリー主任研究員, 工博。次世代メモリに関する研究・開発に従事。応用物理 学会会員。

Advanced LSI Technology Lab.

村岡 浩一 MURAOKA Koichi, D.Eng.

研究開発センター LSI基盤技術ラボラトリー主任研究員, 工博。次世代メモリに関する研究・開発に従事。応用物理 学会会員。

Advanced LSI Technology Lab.