大容量・高温化対応蒸気タービンの溶接ロータ

Dissimilar Welded Rotors for Large-Capacity High-Temperature Steam Turbines

浅井	知	齊藤	和宏	村上	格
ASAI Satoru		SAITO Kazuhiro		MURAKA	MI Itaru

東芝は、環境に配慮した高効率発電システムの実現のために蒸気タービンの大容量・高温化に取り組んでいるが、大容量・ 高温用一体型タービンロータは長期の製造期間が必要となるため、短納期化が可能な溶接ロータの開発を進めてきた。 今回、高中圧ロータとして、改良12 %クロム (Cr) 鋼とクロムモリブデンバナジウム (CrMoV) 鋼から構成される異材溶接 ロータの開発を行った。その溶接施工法を確立するとともに、継手強度、熱安定性、及び検査技術の課題を検証した。更に、 開発した異材溶接ロータを (株)シグマパワー有明 三川発電所2号機に適用し、良好な運転状況が得られることを確認した。

Toshiba has been developing a large-capacity high-temperature steam turbine to realize highly efficient, environmentally conscious power generation systems. We have also been engaged in the development of a welded rotor for steam turbines in response to the market demand for short delivery times in recent years.

We have now developed a welding method to fabricate dissimilar welded rotors, composed of modified 12% chromium (Cr) steel and chromiummolybdenum-vanadium (CrMoV) steel, for high- and intermediate-pressure (HIP) turbines. The joint strength and thermal stability of the newly developed welded rotor, as well as the applicable inspection technique, have been verified through tests. As a result, the rotor has been applied to the high-pressure (HP) turbine of Sigma Power Ariake Co., Ltd.'s Mikawa Power Plant Unit 2, where its successful performance has been confirmed under actual machine conditions.

1 まえがき

蒸気タービン用ロータ材料には,12%Cr鋼や低合金鋼が用 いられる。従来,高温強度が必要となる高中圧一体型蒸気 タービンでは,高温側の材料(12%Cr鋼)による一体鍛造 ロータが用いられてきた。12%Cr鋼は,高温強度に優れるた め,高圧側に用いられるのに対し,靭性(じんせい)に優れる 低合金鋼は,中圧,低圧側に適用される。近年,蒸気タービ ンの高温化,大容量化に伴い,より高温強度に優れる化学成 分を改良した改良12%Cr鋼の採用やロータの大型化により, 大型鍛造品では長期の製造期間を要するようになってきた。 そこで,短納期化の市場ニーズに対応するため,高圧,中圧, 低圧部分をそれぞれもっとも適した材料で製造した小形鍛造 品を活用できる溶接構造ロータの開発を進めてきた。

東芝のロータ溶接技術は、1970年代にディスク溶接構造の ガスタービンロータの採用に始まり、12%Crロータの一部分と なるジャーナル部 (軸受部)のオーバレイ溶接^(注1)やロータ溶接 補修技術などで技術の蓄積を図ってきた。低合金鋼のCrMoV 鋼や3.5%ニッケルクロムモリブデンバナジウム (NiCrMoV) 鋼の同種系溶接ロータの開発を経て、今回、改良12%Cr鋼と CrMoV鋼の異材溶接技術を確立し、高中圧系溶接ロータの

(注1) 12%Cr鋼製ロータに,低合金鋼を肉盛溶接すること。

開発を行った。

ここでは、改良12%Cr異材溶接ロータの溶接技術とその 検証結果について述べるとともに、700℃級の先進超々臨界圧 (A-USC) 蒸気タービンロータへの今後の適用について述べる。

2 溶接ロータの構造

高中圧ロータ用の一体型鍛造ロータと異材溶接ロータの構 造例を図1に示す。異材溶接ロータでは、高温部位の中央部 だけに改良12%Cr鋼を、その両側に低合金鋼のCrMoV鋼を 配した構造で全長約7.5mである。重量は25~35tであり、 溶接部は外径で約700mm、厚さは強度上十分な約150mm としている。12%Cr鋼部分が少なくなるため、ロータ材の調 達範囲が拡大し、納期短縮ができる。更に12%Cr鋼一体鍛 造ロータでは、ジャーナル部に耐ゴーリング(焼付き防止)を 目的として低合金鋼のオーバレイ溶接が行われていたが、溶接 ロータでは、ジャーナル部が低合金鋼で構成されるためオー バレイ溶接が不要となる。

3 ロータ溶接技術

ロータ溶接での技術ポイントは,異材溶接継手の強度確保 と,溶接時並びに運転中のロータの曲がり抑制である。

溶接時のロータの曲がりを抑制するためには溶接入熱量と 溶接量を極小化することが有効であり、溶接法としては狭開 先ホットワイヤ TIG (Tungsten Inert Gas)溶接^(注2)を適用し た。ロータ溶接部位から採取した断面マクロ写真を図2に示 す。溶接肉厚は150 mm,溶接幅は約10 mmである。溶接材 料は,低合金鋼組成のものを適用している。

⁽注2) 非消耗のタングステンを電極として用いて、母材間にアークを発生させ、電極とは別にアーク内に溶加棒を挿入するガスシールドアーク溶接法。

表 1. 高甲圧溶接ロータの代表的損傷モート Typical failure modes of HIP welded rotors						
運転モード	作用する力	破壊モード				
中校演奏	遠心力,熱応力	延性破壊 (クリープ)				
足怕 建料	自重曲げ、振動	高サイクル疲労				
冷機起動	遠心力,熱応力,残留応力	脆性 (ぜいせい) 破壊				
おみみが信止	遠心力,熱応力	低井之有町座巻				
心則及い 予止	軸ねじり	国リイクル疲労				

溶接継手部には、タービンロータとして使用するうえで要求 される強度を満足する必要がある。表1は、中高温域で使用 する蒸気タービン溶接ロータで想定される代表的な損傷モー ドを示したもので、運転時に溶接部に掛かる力の種類に応じ て破壊モードを抽出した。溶接ロータでは、強度特性が異な るCrMoV鋼と改良12%Cr鋼を溶接接合していることと、溶 接熱影響部(HAZ)や残留応力の影響が懸念されるため、溶 接部強度の十分な検討が不可欠である。そこで実機の溶接 施工と同条件で製造した実サイズのロータ試験体から採取し た継手試験片の強度試験を行い、これらの損傷モードに対応

図3. A按触子の強度 一 いれに比べておりのにはあるものの, いりたの の継手強度特性も目標値を満足しており良好である。 Mechanical strength of welded joints

特

集

した溶接部強度を確認した。溶接部強度は溶接後の熱処理 条件により大きく左右されるが、CrMoV鋼,改良12%Cr鋼, 及び溶接金属の焼戻し特性が近いことから、この溶接ロータ では異材溶接の制約を受けずに、最適な溶接後熱処理条件 を選定できる。最終的に選定した熱処理条件の溶接継手の 強度を母材強度と比較して図3に示す。母材に比べて若干の 低下はあるものの、いずれの継手強度特性も目標値を満足し ており、良好である。

更に実サイズの試験体で,溶接欠陥,溶接残留応力,継手 形状を検証し,構造解析でロータ溶接部の十分な継手強度を 確認している。

4 溶接ロータの製造検証

実サイズの改良12%Cr鋼とCrMoV鋼を用いて異材溶接 ロータの製造性の検証を行った。ロータの長さは約7.5 mであ る。図4は、溶接部位を示したもので、溶接に際しては、溶 接低温割れを防止するため高周波コイルヒータで溶接部を 200~250℃に予熱している。また、図5は溶接装置と溶接 状況を示したもので、溶接はロータを回転させて、1層1パス で、初層から下向き溶接で行っている。溶接中は、溶接オペ レーターが溶接トーチに取り付けたカメラによる溶融池状況 のモニタリングと溶接条件の監視を行うことで、溶接施工の異 常管理を行い、溶接欠陥発生防止に努めている。

溶接終了後には、溶接部の非破壊検査として、表面検査の ほか、TOFD (Time of Flight Diffraction)法の超音波探傷

図4. 溶接状況 — 溶接中,溶接部を高周波コイルヒータで予熱している。 Rotor welding in process

試験を行い,継手全域の健全性を確認した。図6は超音波 検査のようすを示したもので,検査は自動で行われる。検査 の結果,表面欠陥は認められず,超音波探傷試験でも平底穴 (FBH) φ1.6 mm感度校正曲線を超える欠陥は認められず, 許容基準を十分満足する結果が得られた。また,超音波探傷 試験の欠陥サイズ評価結果は,溶接後とその後の熱処理後で も差異は認められなかった。

溶接後の熱処理後に熱安定性試験を行い,使用温度域で のロータの曲がり発生を確認した。溶接により溶接金属部の 化学組成に部分的な差異が生じて膨張率が変化すると,運転 中の高温定常時にロータが曲がるおそれがある。

そのため,溶接後のロータ素材について常温時と高温保持時の回転振れ量を測定し,軸芯(しん)位置の変化を評価した。その結果,高温保持温度610℃の軸芯位置は常温時から最大0.008 mmの変化で,一体鍛造ロータと同じ基準値を満足するものであった。

これらの結果から、溶接ロータの製造健全性が確認できた。

図6. 超音波探傷検査装置 — 自動で超音波探傷を行うことができる。 Automatic ultrasonic inspection equipment

5 溶接ロータの実運転検証

溶接ロータを採用した高圧ロータの実運転での検証を三川 発電所2号機で行った⁽¹⁾。まず、CrMoV鋼共材溶接ロータの 実機での検証を行って、良好な運転状況を確認した後、改良 12%Cr鋼異材溶接ロータでの検証を行った。

高圧ロータの外観を図7に示す。検証結果として, 軸振動 値は許容値に対し十分小さく, 振動が安定していることを確認 した。また, 運転後に溶接部の超音波探傷試験を行ったが, 結果は製作時と変化がないことを確認した。

図7. 三川発電所の高圧ロータ — 溶接ロータを高圧ロータに適用し,実際 に運転して検証を行った。 Welded HP turbine rotor at Mikawa Power Plant

図8. A-USC溶接のモデルロータ — Ni基合金と低合金鋼の異材溶接を 適用している。

Model dissimilar welded rotor for advanced ultra-supercritical (A-USC) application

6 A-USCタービンロータへの展開

次世代A-USCタービンでは、ロータ素材としてNi基合金の 採用が検討されている。しかし、Ni基合金の大型鍛造には 技術的にも制約があり、溶接構造化が必須である。そこで、 このロータ溶接技術を活用し、Ni基合金と低合金鋼の異材溶 接ロータの開発を進めている。

全長530 mm, 溶接部の外径630 mmのモデルロータの溶 接結果を図8に示す。12%Cr異材溶接ロータと同様に, 狭開 先ホットワイヤTIG溶接を適用しており, 溶接部の健全性を 確認した。今後は, 使用温度を踏まえた継手強度の確認を含 め長時間の信頼性評価を進める。

7 あとがき

近年の蒸気タービンの高温化,大容量化に対し,短納期化の 市場ニーズに応えるため,改良12%Cr鋼とCrMoV鋼から構成 される高中圧異材溶接構造ロータの開発を行った。溶接施工 法の開発並びに継手強度評価,実サイズでの製造検証を実施 した後,実運転での検証を三川発電所で行い,溶接ロータの健 全性を確認した。

今後は、12%Cr異材溶接ロータの実用化を図るとともに次 世代A-USCロータへの適用を進める。

文 献

 SHIBUKAWA, N., et al. The Actual Size Steam Turbine Developmennt Facility Mikawa Power Station Unit-2. Proc. of ICOPE-09. 3, 09-205, 2009, p.365 - 370.

浅井

自動溶接システム及び溶接プロセスの開発に従事。溶接学 会会員。

Keihin Product Operations

知 ASAI Satoru

齊藤 和宏 SAITO Kazuhiro

電力システム社 電力・社会システム技術開発センター 金属 材料開発部主査。高温材料の強度評価技術に従事。日本 材料学会,日本機械学会会員。

Power and Industrial Systems Reserch and Developmet Center

村上 格 MURAKAMI Itaru

電力システム社 京浜事業所 原動機部参事。 蒸気タービンの開発・設計に従事。日本機械学会,日本材料 学会会員。

Keihin Product Operations

特

集

15

大容量・高温化対応蒸気タービンの溶接ロータ