- 般 論 文

次世代LSIに向けたメタルゲート電極/高誘電率ゲート絶縁膜の高信頼化技術

High-Reliability Technology for Metal Gate/High-k Gate Dielectrics for Advanced LSIs

深津茂人	平野	泉	三谷	祐一郎
FUKATSU Shigeto	HIRANC) Izumi		II Yuichiro

LSIの高性能化のため、ゲート絶縁膜はシリコン酸化膜(SiO2膜)及びシリコン酸窒化膜(SiON膜)(以下、二つ併せて SiO(N)と略記)から高誘電率(HK:High-k)ゲート絶縁膜へ、多結晶シリコン(poly-Si)電極はメタルゲート(MG)電極へ と置き換える新たなゲートスタック構造の開発が進められている。

今回,東芝は有力な候補の一つとして、このゲートスタック構造のHKゲート絶縁膜に窒素(N)添加ハフニウムシリケート (HfSiON) 膜を,MG電極にタンタルカーバイド(TaC_x)を採用した、TaC_x/HfSiONゲートスタック構造のMOSFET(金属 酸化膜半導体型電界効果トランジスタ)の信頼性について調べた。バイアス温度不安定性(BTI: Bias Temperature Instability)と経時絶縁破壊(TDDB: Time Dependent Dielectric Breakdown)を総合的に評価すると、TaC_xの組成及 び膜厚に対して二律背反の関係がある。この関係を越えてBTIとTDDBの高信頼化の両立を実現するには、TaC_xの深さ方向 の組成制御が有効であることを見いだした。

Technologies to replace silicon dioxide (SiO₂) or silicon oxynitride (SiON) films with high-k gate dielectrics as well as the polysilicon gate electrode with a metal gate electrode for gate stack structures have been under development to achieve further miniaturization of large-scale integrations (LSIs).

Toshiba has investigated bias temperature instability (BTI) and time-dependent dielectric breakdown (TDDB) in tantalum carbide (TaC_x)/hafnium silicon oxynitride (HfSiON) metal-oxide-semiconductor field-effect transistors (MOSFETs), particularly the effects of a TaC_x metal gate electrode from the standpoint of the trade-off between BTI and TDDB in terms of TaC_x thickness and composition. Various TaC_x layers were deposited on the same HfSiON layer. Both the composition of higher Ta in the TaC_x layer and a thicker TaC_x layer improved BTI and mobility, but worsened time to breakdown (Tbd) because of the effect of metal gate-induced defects. We clarified that control of the depth profile of the TaC_x metal gate can achieve high reliability of both BTI and TDDB beyond the trade-off.

1 まえがき

LSIの集積化及び微細化に伴い,ゲート絶縁膜の薄膜化が 進んでいる。しかし,ゲート絶縁膜を極薄膜化すると漏れ電 流が増大してしまうため,従来のpoly-Si電極/SiO(N)構造に 代わる,MG電極/HK 膜構造の開発が進められている。その 一方で,従来のSiO(N) 膜に比べて,HK 膜中には初期欠陥が 多いことが知られており,初期欠陥起因の信頼性劣化が懸念 されている⁽¹⁾。特に長期信頼性,すなわち使用環境下での LSI性能の経時劣化は,市場への出荷後の動作を保証するた めに極めて重要な課題である。したがって,MG/HKゲートス タック導入による長期信頼性への影響を明確にしてモデル化 し,対策を施すことが必須となる。

長期信頼性には、MOSFETへの電圧印加でしきい値電圧 の変動や相互コンダクタンスの低下などの性能劣化を招くバイ アス温度不安定性 (BTI: Bias Temperature Instability)⁽¹⁾ と、ゲート絶縁膜の絶縁性が著しく劣化しMOSFETのスイッ チング素子としての機能が劣化する経時絶縁破壊 (TDDB: Time Dependent Dielectric Breakdown) がある⁽²⁾。BTIに は、pチャネルMOSFETで発生する負BTI (NBTI: Negative BTI)と、nチャネルMOSFETで発生する正BTI (PBTI: Positive BTI)がある。従来のSiO (N) 膜のNBTIは、ゲート 絶縁膜とSi基板間の界面のSi-H (水素)結合におけるH種の 脱離とH種の拡散によって劣化が引き起こされると考えられ ている⁽¹⁾。更に、HKゲートスタックでは、この界面の劣化に加 えてHK 絶縁膜固有の欠陥へ電荷が捕獲されることによって 劣化が引き起こされると考えられている。一方、HKゲートス タックを持つnチャネルMOSFETにおけるPBTIは電子を捕 獲する欠陥が原因とされ、重要な信頼性の問題の一つとなっ ている⁽¹⁾。

今回,MGとしてタンタルカーバイド(TaC_x),HKとしてN 添加ハフニウムシリケート(HfSiON)を選定した。HfSiONは 誘電率や膜の安定性などの観点からもっとも実用化に近い HK膜であり、またTaC_xは良好な耐熱性を持ち、かつnチャネ ル及びpチャネルMOSFETのしきい値制御性から有望なMG 材料と考えられている⁽³⁾。このTaC_x/HfSiON構造から成る素 子の信頼性は明らかになっておらず、劣化機構の解明とそれ に基づく高信頼化技術の開発が急務である。

文

ここでは、TaC_x/HfSiON構造を持つMOSFETのBTI及 びTDDBを総合的に評価し、BTIとTDDBの高信頼化を両 立する指針について述べる。

2 デバイス構造及び評価方法

信頼性試験を行ったデバイスは poly-Si/窒化チタン(TiN)/ TaC_x/HfSiONゲートスタック構造を持つMOSFETである (**図1**)。HfSiONは物理膜厚2.5 nm, TaC_x層は10 nmを中心 に作製した。TaC_xで, Taの組成比が低いTa₁Cと高いTa₂C の2水準に加えて, Ta₂Cの3 nm及び5 nmの膜厚も評価を 行った。BTI評価は,電気的ストレスとしてゲート電圧 Vgを与 え,設定したストレス時間ごとにドレイン電流 Id-Vg測定を行 い,定電流法により,しきい値電圧 Vth (Idが基準値を超える Vgの値)を抽出し,TDDB評価は,ゲート電流 Igの時間変化 を測定した(**図2**)。評価温度は125 ℃である。

TiN			TiN	
10 nm− Ta₁C	TiN	TiN	10 nm− Ta₂C	
	TIIN	5 nm-		
	3 nm−Ta₂C	Ta₂C		
HfSiON	HfSiON	HfSiON	HfSiON	
界面層	界面層	界面層	界面層	
Si基板	Si基板	Si基板	Si基板	

図1. デバイスの構造 — Si 基板上に, 界面層, 2.5 nmのHfSiON, TaC_x, 及びTiNを積層した構造となっている。 Device structures

とともに負方向に変化する。更に大きなストレスにより絶縁破壊を起こし、 急激に電流が増加する。

Results of measurement of drain current-gate voltage (Id-Vg) curves and time dependence of gate current (Ig) of pMOSFET

3 TaC_x組成及び Ta₂C 膜厚依存性

電気ストレス印加後のストレス時間tに対するVth(t)の劣化 量 Δ Vth(t)を図3に示す。ここで、 Δ Vth(t)=Vth(t)-Vth(0) と定義した。また、実線は Δ Vth= $a \cdot t^{\beta}$ の式を用いてフィッ ティングした結果であり、NBTI、PBTIともに再現できてい る。ここで、 $a \geq \beta$ はフィッティングパラメータである。この傾 向はpoly-Si/SiO(N)やpoly-Si/HKゲートスタックと同様であ る。試料間でのBTIの比較は、図3で求めた近似曲線を外挿 して寿命を見積もり、寿命の電界依存性という形で行った。

3.1 NBTI及びPBTI特性

ここではBTI寿命の定義として $|\Delta Vth| = 50 \text{ mV}$ となる時刻 と定義した。各試料のBTI寿命の電界((Vg-Vth)/Tinv(絶 縁膜厚))依存性を**図4**に示す。膜厚10 nmのTa₁CとTa₂C の寿命を比較すると、Ta組成比の高いTa₂CのほうがNBTI、 PBTIともに寿命が長い。次にTa₂C 膜厚という観点で寿命を 比較すると、膜厚が厚いほうがNBTI、PBTIともに寿命が

Negative bias temperature instability (NBTI) of pMOSFET and positive bias temperature instability (PBTI) of nMOSFET

長い。つまり、Taの組成比が高く、Ta₂C 膜厚が厚いほうが NBTI 及び PBTI の耐性は高くなる。

TaC_x電極がBTIの劣化機構に与える影響を調べるために、 NBTIによる Δ Vth (1,280 s)の温度依存性を測定した(**図5**)。 各試料とも劣化反応の活性化エネルギーが0.09 eVで一致し た。これは、TaC_x組成やTa₂C膜厚が変わることで、NBTI の劣化機構に影響を与えるのではなく、NBTI劣化の起源と なる欠陥の量に影響を与えることを示唆している。

次に、NBTIによる Δ Vth (1,280 s) とホール電流密度 Jh, PBTIによる Δ Vth (1,280 s) と電子電流密度 Jeの関係を**図6** に示す。前述のように、PBTIは "膜中欠陥による電子の捕獲" に起因することが知られており⁽¹⁾, Jeの値が決まればPBTIに よる Δ Vthがほぼ決まる。一方、NBTIはある Jhの値でも Δ Vth は異なる。これはNBTIの劣化機構が "膜中欠陥によるホー ルの捕獲"に加えて "界面準位生成"に起因する影響が大きい ためであると考えられる。

3.2 経時絶縁破壊特性

絶縁破壊寿命 Tbdを多点測定し累積不良率が63%となる 破壊寿命63%Tbdを求めると、その電界依存性は図7のよう になる。膜厚10 nmのTa₁CとTa₂Cの63%Tbdを比較する と、pとn両チャネルのMOSFETともに、Taの組成比が高い Ta₂Cのほうが小さい。Ta₂C膜厚の観点で寿命を比較すると、 両チャネルのMOSFETともに、膜厚が厚いほうが小さい。つ まり両チャネルのMOSFETともに、Taの組成比が高く、Ta₂C 膜厚が厚いほうがTDDB耐性は低くなる傾向が得られた。こ の傾向はBTIの傾向と相反する。

3.3 TaC_x組成依存性及びTa₂C膜厚依存性

各試料のBTI寿命, 63 %Tbd,及び移動度の比較を図8に 示す。BTI寿命と移動度は同じ傾向を持ち,Taの組成比が高 く,Ta₂C膜厚が厚いほど良好であった。一方,63 %Tbdは

BTI寿命及び移動度とは逆の傾向を持ち, Taの組成比が低 く、Ta₂C膜厚が薄いほど良好となった。

3.3.1 TaC_x組成依存性及びTa₂C膜厚依存性の起源

一般的に、BTIと移動度は絶縁膜中の電荷がSi界面に近 いほど強く影響を受ける。したがって、BTI寿命と移動度が 同じ傾向を持つのは界面付近の電荷に起因する。これは, TaCx層上に存在するTiN層からのNに起因する欠陥が考えら れる。poly-Si/SiON構造でも、SiON膜中のNがSi基板に近 い位置に導入されるとBTIを悪化させることが知られており, MG/HKゲートスタック構造でも同様にBTIを悪化させる⁽⁴⁾。 更に、絶縁膜中のNは移動度を低下させることもわかっている。

ここで、TaC_xの影響が界面準位でなく電荷捕獲欠陥に起因 していることを確認するために、ストレス印加前の欠陥量を反 映する、ストレス印加直後のΔVth (ΔVth_{ini})⁽⁵⁾を調べた。その 結果, ΔVth_{ini}はTa_lCがもっとも大きく(ストレス印加前の欠 陥が多い), 10 nm-Ta₂Cがもっとも小さかった (ストレス印加 前の欠陥が少ない)。このことから、TaC_x電極の影響でストレ ス印加前の電荷を捕獲する欠陥の量が変化していることがわ かる。

したがって、BTIと移動度のTaC_x組成及びTa₂C膜厚依存 性は、以下のように説明ができる。つまり、Ta2C 膜厚が薄いほ ど,界面からTiN層との距離が近いため,TiN層から拡散する Nが多く、多量のNがSi界面付近まで到達する。そのため、 N起因の初期欠陥が多数形成され、BTIと移動度は悪化す る。また、Taの組成比が低いほどTaC、層のNの拡散が速い と予測され、Ta₁Cでは多量のNが界面付近まで到達し、BTI と移動度を悪化させると考えられる。

TDDBはHK 膜中の欠陥生成に起因する。東芝は以前に, Ta 組成比が高いTa₂CとHfSiONの界面では反応が起き、そ のためにHfSiON膜の薄膜化,Siの外方拡散,Hf高濃度化, 及びゲート端での固定電荷の生成が起こることを明らかにし た⁽³⁾。また, HfSiONの薄膜化とHf高濃度化はHK 膜中の欠 陥生成を促進すると考えられる⁽²⁾。Ta₂Cでは界面反応に伴う HfSiON 膜の薄膜化が起きているので、実際に、各試料の電 気的なTinvを測定すると、nチャネル及びpチャネル MOSFET ともにTa1Cがもっとも厚く、Ta2C膜厚が厚いほどTinvは薄く なることが確認された。これは界面反応によりHfSiONが薄 膜化しているためである。つまり、Taの組成比が高く、Ta₂C 膜厚が厚いほど、TaC,とHfSiONの界面での反応が大きく、 HfSiONの薄膜化が確認されたため、それに伴うHf高濃度化 も生じていると考えられる。

これまで述べたように、Taの組成比が高く、TaC_x層が厚い

場合は、界面反応によるHfSiONの薄膜化とHf高濃度化が引き起こされている。その結果として、欠陥生成レートPgの増速が起こり、TDDBの悪化を招くと考えられる。それを確認するためにSILC (Stress-Induced Leakage-Current)特性を取得した(図9)。SILCは電気的ストレスを印加することで、絶縁膜中に生成される欠陥を介して流れる漏れ電流であり、絶縁膜中の欠陥量の指標として使用できる。PgはSILCの時間依存性から算出した。予測どおり、HfSiONが薄くなるほど、Pgは大きくなる傾向が得られた。まとめると、63%Tbdの各試料に対する傾向は、TaC_xとHfSiONの界面反応により薄膜化とHf高濃度化が起こり、Pgが高くなったことに起因する。

3.3.2 BTI及びTDDBの高信頼化両立の指針 BTI とTDDBの二律背反の問題を解決し,高信頼化を実現するた めには,初期欠陥を少なくすると同時に,Pgも低減することが 必要である。そこで,TaC_xのTa成分を深さ方向に濃度傾斜 を付けることを試みた。その結果,二律背反の関係を越えて, BTIとTDDBの高信頼化を両立できる可能性を見いだした (**図10**)。

4 あとがき

TiN/TaC_x/HfSiONゲートスタックを持つMOSFETのBTI 特性とTDDB特性を調べ,特にTaC_x電極が信頼性に与える 影響を調べた。その結果として,BTIと移動度は,Taの組成 比が高く,Ta₂C膜厚の厚いものが好ましい。一方,TDDBは 逆に,Taの組成比が低く,Ta₂C膜厚の薄いものが好ましい。 このように,TaC_x電極がBTIやTDDBに与える影響には二 律背反の関係があった。

しかし、TaC_xの深さ方向に濃度傾斜を付けて制御すること で高性能化と高信頼化の両立ができることがわかった。

次世代LSI技術として有望なTiN/TaC_x/HfSiONという ゲートスタック構造では、BTIとTDDBの二律背反の関係を 踏まえてTaC_xをデザインする必要がある。

文 献

- Zafar, S., et al. Threshold voltage instabilities in high-k gate dielectric stacks. IEEE Trans. Dev. Mat. Reliab. 5, 1, 2005, p.45-64.
- (2) Hirano, I., et al. "Impact of Metal Gate Electrode on Weibull Distribution of TDDB in HfSiON gate dielectrics". Proc. IRPS. Montreal, Canada, 2009-04, IEEE. 2009, p.355 - 361.
- (3) Goto, M., et al. "Impact of tantlum composition in TaC/HfSiON gate stack on device performance of aggressively scaled CMOS devices with SMT and strained CESL". VLSI Symp. Tech. Dig. Honolulu, Hawaii, USA, 2008-06, IEEE. 2008, p.132 - 133.
- (4) Garros, X., et al. "Guidelines to improve mobility performances and BTI reliability of advanced high-k/metal gate stacks". VLSI Symp. Tech. Dig. Honolulu, Hawaii, USA, 2008-06, IEEE. 2008, p.68 - 69.
- (5) Hirano, I., et al. "Influences of initial bulk traps on negative bias temerature instability of HfSiON". Proc. SSDM Conf. Kobe, Japan, 2005-09, The Japan Society of Applied Phiscs. 2005, p.20-21.

深津 茂人 FUKATSU Shigeto, Ph.D. 研究開発センター LSI 基盤技術ラボラトリー,工博。 高誘電率ゲート絶縁膜及びメモリデバイスの信頼性技術の 研究・開発に従事。応用物理学会会員。 Advanced LSI Technology Lab.

平野泉 HIRANO lzumi 研究開発センター LSI 基盤技術ラボラトリー。 高誘電率ゲート絶縁膜の信頼性技術の研究・開発に従事。 応用物理学会会員。 Advanced LSI Technology Lab.

 三谷 祐一郎 MITANI Yuichiro
研究開発センター LSI 基盤技術ラボラトリー主任研究員。
CMOSロジックデバイス及びメモリデバイスの絶縁膜信頼性 技術の研究・開発に従事。
Advanced LSI Technology Lab.