官能指標=1

目標音

官能指標=2

75

Delight設計の概念を実現 する製品音のデザイン

ここち良い音で製品価値を高める

家電製品や情報機器など、家庭やオフィス内は種々の 製品が発生する音で満たされています。これらを小さく することは技術的には不可能ではありません。しかしな がら, そのためには材料などの多くの資源を必要とし, 環境に優しくありません。また、製品には固有の音が あり、これをなくすことも不自然です。そこで、製品の 音を単に小さくするのではなく、ここち良い音を実現す る製品音のデザインが最近注目を浴びています。

東芝は、従来の低騒音設計とは異なり、製品が発生 する音を付加価値と考え、音を"創(つく)り込む"、すな わち製品音のデザインを製品開発そのものに組み込んだ Delight設計の概念を提案し、その実現に向けて研究に 取り組んでいます。

Retter設計 魅力品質 性能品質 Delight設計 客観指標 不充足 → あたりまえ 品質 Must設計

図1. 狩野モデルと三つの設計 — 性能品質は要求仕様の充足と顧客の満足 が比例関係にあります。あたりまえ品質は不充足だととても不満ですが、充 足しても満足はしません。魅力品質は不充足でも不満はありませんが、充足 すると非常に満足します。性能品質,あたりまえ品質,魅力品質を具体化す る設計をBetter設計, Must設計, Delight設計と呼んでいます。

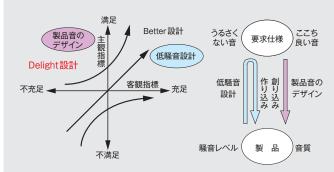


図2. 製品音のデザインと低騒音設計 — 製品ができてから作り込む従来の 低騒音設計に対して、製品音のデザインでは、製品開発の初期に要求仕様と してここち良い音を定義し、うるさくないのはもちろんのこと、ここち良い 音を製品に創り込みます。

狩野モデルと三つの設計

製品音のデザインは新しい設計の考 え方の一つです。そこで、本題に入る 前に、製品開発に関する三つの設計に ついて紹介します。

三つの設計は狩野モデルをベースに しています。狩野モデルは、1970年 代後期に狩野紀昭博士が提案した品質 管理の方法で、図1に示すように、品 質管理の要求を"充足"という客観的な 指標と、"満足"という主観的な指標に 2次元的に表現しています。ここで、 充足=満足となるのが"性能品質"で従 来の考え方です。しかしながら、実際 にはこの範疇(はんちゅう) に入らない ものもあり、それを定義したものが、 "あたりまえ品質"と"魅力品質"です。 あたりまえ品質とは、不充足だと不満 だが、充足していても満足ではないも のを、魅力品質とは、不充足でも不満 はないが、充足していると満足なもの を言います。

上記の性能品質, あたりまえ品質, 魅力品質に、三つの設計である Better設計, Must設計, Delight設 計を対応付けています。

Delight設計と製品音のデザイン

Delight設計とは、これがなくても 製品としては機能するが、これをうま く適用すると魅力的な製品になるよう な設計です。この考え方を製品音に適 用したのが製品音のデザインです。製 品音のデザインと従来の低騒音設計の 比較を図2に示します。

従来の低騒音設計はBetter設計です。 騒音レベルが小さいものほど満足感が

あるという前提で設計を行います。う るさくない音を実現する設計とも言え ます。確かに、騒音レベルがあるレベ ル以上の場合には、小さい方が満足感 がありますが、あるレベル以下では騒 音レベルの低減だけでは満足感は得ら れません。そこで、騒音レベルはある 程度小さくしたうえで、ここち良い音 を製品に創り込んでいくのが製品音の デザインです。

製品音のデザインの手順

製品音のデザインのためには、対象 とする製品の音のここち良さを測る "音のものさし"が必要です。**図3**に示 すように, 主観評価として官能試験に よる印象評価を行い、音に対する潜在 的な顧客の要求を収集し、分析して官 能指標を定義します。次に、計測デー

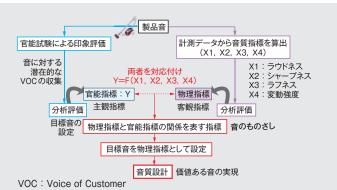


図3. 製品音のデザインの手順 — 印象評価の方法はSD法のほかに、2種 類の音の大小(好き、嫌い)の判断を行う一対比較法もよく使われます。音 のものさしは、対象とする製品固有のものです。

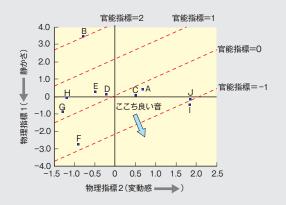
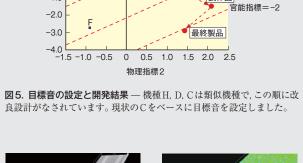


図4. 製品音のここち良さを示す音のものさし ― 音のものさしは、従来の騒 音レベルでは判断できなかった、繊細な音質の差を抽出することができます。

40

30


20

1.0

-2.0

-3.0

(a) 数値解析のためのメッシュ図

官能指標=0

官能指標=-1

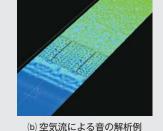


図6. 音質設計のための技術 ― 音源の多くは空気の物体周りの流れに よって発生します。この空気流によって発生する音を解析予測する技術 がCAAです。まだ、研究段階ですが、解析した結果を実際に音として 聴くこともできるようになります。

タから音質指標(ラウドネス,シャー プネス, ラフネス, 変動強度) を算出 し、これを分析して物理指標を定義し ます。最後に、物理指標と官能指標を 関連付けます。この関係が音のものさ しとなります。

ここで、官能指標は被験者によって 結果が変わってきますので、誰を対象 に製品を開発するのかを明確にしてお く必要があります。次に、音のものさ し上に目標音を設定し、音質設計によ り価値ある音を実現します。

製品音のデザインの適用

製品音のデザインをある家電機器に 適用した例を紹介します。10機種の 音に関して印象評価と音質評価を行 い、図4に示す音のものさしを導出し ました。印象評価では、SD法^(注1)を 適用しました。物理指標1は"静かさ" を、物理指標2は"変動感"に対応し、 被験者は静かである程度変動感のある 音をここち良いと感じていることがわ かります。この結果を受けて、目標音 を図5のように設定しました。

目標音の物理指標を満足するために 音質設計(製品設計)した結果を同じく 図5に示します。試作段階で目標音を 達成していましたが、試作品の聴感評 価で更に音質改善を行うことにより, 最終製品では目標音を大きく上回る音 質が実現できました。

製品音のデザインの今後

製品音のデザインを実現するために

(注1) "好き-嫌い" などの反対語の対から 成る評価尺度を複数用いて、対象の 評価を行う測定法。

は、今回紹介した目標音の設定に加え て、目標音を具体化するための音質設 計が必要となります。今後、音源の性 質を予測したり、音が構造物及び空間 を伝搬して人が聴覚で感じるまでの伝 達経路を予測する技術を確立します。 そのうえで、目標音を系統的に実現す る音質設計が必要となります。その一 例として、数値空気音響解析(CAA: Computational Aero-Acoustics) & 図6に示します。

音のものさしによる目標音設定と高 度な音質設計技術を両輪に. これから も製品音のデザインの研究に取り組ん でいきます。

穂坂 倫佳

研究開発センター 機械・システムラボラトリー

74 東芝レビュー Vol.63 No.11 (2008) Delight 設計の概念を実現する製品音のデザイン