集

CPP Spin-Valve Films with Current-Confined-Path Nano-oxide Layer

福澤英明	湯浅 裕美	岩崎(二志	
FUKUZAWA Hideaki	YUASA Hiromi	IWASAKI Hitoshi	

高密度磁気記録のハードディスク装置 (HDD) を実現するために,感度の高い磁気再生ヘッドが求められている。このような 磁気再生ヘッドは従来技術の単純な延長では実現不可能であり,新機能を加えた,高感度なスピンバルブ膜が必要である。 東芝は,特殊なナノ微細構造を持つスピンバルブ膜の作成に成功した。スピンバルブ膜の一部に極薄酸化物絶縁層からなる ナノオキサイドレイヤー (NOL: Nano-Oxide-Layer)を挿入し,NOL を貫通する電流を通電するためのナノサイズの金属 電流パスを形成して,大幅に感度向上が可能な膜を開発した。

Demand has recently arisen for new reader heads with high sensitivity for use in hard disk drives (HDDs), in order to realize high-arealdensity recording. Since such high-density recording cannot be achieved by improvement of the conventional technology, spin-valve films with high sensitivity and new functionality are required.

Toshiba has successfully developed new spin-valve films having a special nanostructure. A significant increase in sensitivity has been achieved by inserting a nano-oxide layer (NOL) in the spin-valve film, with the NOL being mainly composed of an insulator material having nano-size current-confined paths that punch through the insulator layer.

1 まえがき

小型で大容量のハードディスク装置(HDD)のニーズ増大に 伴い,高密度記録状態での微小なビットからの微弱な磁界も 検知できる,高感度な磁気再生ヘッドが必要とされている。

磁気再生ヘッドの高感度化を実現する心臓部分が,スピン バルブ膜と呼ばれる極薄金属積層膜である。

高密度記録のためには、従来技術の単純な延長では実現 困難であり、新たな機能を付加したブレークスルー技術が 必要である。

そこで東芝は,新たな機能として,複雑なナノ微細構造を持つ スピンバルブ膜を形成することに成功したので次に述べる。

2 電流狭窄型 NOL を持つ CPP スピンバルブ膜

2.1 電流狭窄型 NOL の基本概念

再生ヘッドの基本構成となるスピンバルブ膜の基本概念 を図1に示す。スピンバルブ膜の基本構成は、媒体磁界に よって磁化方向が変化する磁性材料からなるフリー層、非磁 性材料のスペーサ層、磁化方向が固着された磁性材料から なるピン層、ピン層を磁化固着するためのピニング層の、 少なくとも4層以上の積層膜からなり、1層当たり数nmの膜 厚である。媒体磁界によってフリー層の磁化方向が変化し、 それに伴ってスピンバルブ膜の抵抗が変化することで、媒体 情報の"0"と"1"を識別する。

現在のスピンバルブ膜は、図1(a)に示したような膜面内に センス電流を通電する CIP (Current-In-Plane) スピンバルブ 膜である。記録密度が高くなると媒体磁界が弱くなるので, CIP スピンバルブ膜では抵抗変化量が小さくなりヘッド出力 が不足してしまう。それに対し、膜面垂直にセンス電流を通 電する CPP (Current-Perpendicular-to-Plane) スピンバルブ 膜が高密度化に有利といわれている⁽¹⁾(図1(b))。スペーサ 層として、金属の銅(Cu)層を用いた場合が通常のCPP スピン バルブ膜であり、酸化アルミニウム(Al₂O₃)、酸化マグネシウム (MgO) などの絶縁材料を用いた場合が TMR (Tunneling MagnetoResistance) スピンバルブ膜である。CPP スピン 集

バルブ膜では低抵抗が実現できるため、高密度化に伴う 高速応答性が優れており、高密度対応スピンバルブ膜のもう 一方の候補である TMR スピンバルブ膜よりも有利である。

しかし、肝心の高感度化という点においては、CPPスピン バルブ膜の抵抗変化量は著しく低い材料しか存在せず,再生 ヘッドとしての応用を議論できるようなレベルになかった。 そこで感度を上げるための手段として、CPPスピンバルブ膜 中に極薄酸化物層 (NOL: Nano-Oxide-Layer)を挿入した, CPPスピンバルブ膜が検討されている。その構造の概念を 図2に示す。図2では、特殊な構造を持つNOLをスペーサ 層として用いている。NOL材料の主成分としてはAl₂O₃など の絶縁材料を用い,その層を上下に貫通するCuなどの金属 電流パスを複数形成する。このとき金属パスCu部分に電流 が狭窄(きょうさく)されて通電され、Al2O3は絶縁バリア層とし て機能する。このようなNOLを、電流を狭窄するための NOL ということで、電流狭窄型 (CCP: Current-Confined-Path) NOLと呼ぶ。電流狭窄型NOLを持つCPPスピンバルブ膜 では、従来のスピンバルブ膜で問題であった、高密度化に 伴う以下の二つの課題が同時に克服可能となる。

- (1) 高速応答性
- (2) 高感度化

一つ目の高速応答性は、スピンバルブ膜の抵抗が低いこと に起因する。電流狭窄型NOLを持つCPPスピンバルブ膜に おいては、電子伝導パスはすべて金属で形成されるため、 面積抵抗RAの低い値が実現され、高速応答性に有利な再生 ヘッドが実現可能となる。二つ目の高感度化は、電流狭窄型 NOLによって抵抗変化量を増大させることで可能となる。 その理由は、スペーサ層近傍は媒体磁界によって抵抗変化 を生じさせる重要な機能部であるが、電流狭窄されて抵抗

が増大するのはスペーサ層近傍なため,抵抗変化量の増大 に大きく寄与するからである。

2.2 東芝独自のNOL形成プロセスによる感度向上

電流狭窄型NOLを持つCPPスピンバルブ膜には2.1節で 述べたようなメリットはあるが,図2のような複雑なナノ微細 構造を積層膜の一部にだけ形成するのは至難の技である。 そこで,電流狭窄型NOLを実現するためにNOL形成プロ セスの工夫を行った。従来の形成方法は,Al₂O₃とCuの 母材となる金属層を成膜したのち,自然酸化処理(NO: Natural Oxidation)を行う手法であった。それに対し,当社 では独自技術のIAO(Ion-Assisted Oxidation)⁽²⁾を電流狭 窄型NOL形成に適用した。IAOとは,酸化処理時にアルゴ ン(Ar)イオンビームを照射し,そのエネルギーアシスト効果 によってAl₂O₃とCuの相分離を促進させることを目的とした ものである。

両者の形成プロセスの比較を行った結果を図3に示す。

ここで、縦軸のMR (MagnetoResistance)変化率は $\Delta R/R$ で あり、磁界が印加されたときのスピンバルブ膜抵抗変化量 ΔR と、スピンバルブ膜抵抗Rの比である。MR変化率が大 きいほど磁界感度が良好であることを意味する。また、横軸 は面積抵抗RAであり、単位面積当たりのスピンバルブ膜の 抵抗である。面積抵抗RAが500 m $\Omega\mu$ m²と低抵抗領域に おいても、IAOを適用することでMR変化率を従来のNOで 形成した場合の3倍以上も増大させることに成功した。面積 抵抗RAが1,000 m $\Omega\mu$ m²以下の値は、TMRスピンバルブ膜 では実現することが非常に困難であり、このような低抵抗は 高速応答性の観点で大きな利点である。

このように、当社独自のNOL形成技術によって電流狭窄 NOL構造を実現し、良好な磁界感度を得ることに成功した。 MR変化率が向上した理由は、IAOを用いることでAl₂O₃と

特 集

Cuの分離が狙いどおりに促進し、電流狭窄金属パスのCuの 純度が向上したためである⁽³⁾。絶縁膜層中の金属電流パス なので酸化の影響を受けやすく、金属純度を向上させることが 難しいことは容易に想像できるが、IAOによって絶縁部分と 導電部分の差をきれいに分離できたことがキーである。

2.3 磁性材料の工夫による感度向上

NOL形成プロセスに加えて,磁性層を工夫することでMR 変化率は更に向上する。CPPスピンバルブ膜においては、 体心立法格子を持つ鉄コバルト(Fe₅₀Co₅₀)合金を用いた場 合に、スペーサCu層界面での抵抗変化量が大きくなること を見いだしている⁽⁴⁾。そこで電流狭窄型NOLを持つ場合に おいても,磁性材料として従来の面心立法格子構造のコバ ルト鉄 (Co₉₀Fe₁₀)の代わりに、体心立法格子を持つFe₅₀Co₅₀ を用いた。その結果を**図4**に示す⁽⁵⁾。電流狭窄型NOLを持 つCPPスピンバルブ膜では、スペーサ層近傍で電流が狭窄 されるため、体心立法格子を持つFe50Co50を用いる効果が 特に大きくなる。MR変化率は従来材料と比べて約2倍, IAOを用いない従来プロセスのときと比較すると、約6倍も のMR変化率の増大を実現できた。これによってRAが570 $m\Omega\mu m^2$ という低い抵抗において、8.2%のMR変化率、面積 抵抗変化量 ΔRA で46.7 m $\Omega \mu$ m²と、大きな抵抗変化量を確 認することができ、高速応答性に有利な低抵抗と高感度化 の両立を実現することができた。

3 電流狭窄型 NOLのナノ微細構造

3.1 高分解能電子顕微鏡による電流狭窄型 NOL 観察

前章で示したように、磁界に対する感度の高い膜パフォー マンスは実現されたが、図2のような構造が実際に形成され ているかどうかの確認が必要である。分析の制約上、図2 のような複雑な構造を分析することは非常に難しいが,直接 観察することに成功した⁽⁶⁾。

高いMR変化率が確認された膜について,高分解能電子 顕微鏡観察を行った結果を図5に示す。図5に示すように, スピンバルブ膜のスペーサ層部分に酸化物で形成された NOLを確認することができる。図5(a)において,□枠で囲 んだ部分の拡大写真の一例を,図5(b)に示した。アモル ファス酸化物層の一部を,上下に貫通する金属結晶格子が 存在することがわかる。金属結晶格子部分の直径は約5 nm であり,この部分が垂直通電時の電流狭窄部分として機能す る金属電流パスと考えられる。ナノEDS(Energy Dispersive X-ray Spectrum)分析の結果,アモルファス構造部分は Al₂O₃であり,結晶構造部分はCuであることがわかった。 このように,図2のコンセプトで示したような電流狭窄構造が, 実際に実現されていることが確認できた。

3.2 3次元アトムプローブによる電流狭窄型 NOL 観察

高分解能電子顕微鏡によって,電流狭窄構造の存在を確認 することはできた。しかし,金属電流パスの膜面内における 分布状態や,金属電流パスCuのメタル純度などを分析する ことは,測定サンプルを透かして観察している従来の電子 顕微鏡では,どうしても分析することはできない。このような 特殊なナノ微細構造を観察するには、3次元アトムプローブ が適している。3次元アトムプローブとは,測定サンプルを 直径約100 nm 程度のニードル状に加工し,その先端に電圧 を印加することによって先端部分を電界蒸発させて,位置敏 感な検出器で各元素の質量電荷比と(x, y)の2次元座標を 得る分析手法である。電界蒸発は1原子ごとに生じるので, 時間軸の分析がz方向の情報を得ることになり,高分解能な 3次元像を得ることができる。バルクサンプルにおいては3 次元アトムプローブの歴史は長く,実績もあるが,薄膜サン プルでの分析成功例は極めて少なく,分析自体が研究対象 となっているような分野である。

今回,当社は,Imago Scientific Instruments社のLocal Electrode Atom Probeを用いて,電流狭窄型NOLのナノ 微細構造観察を試みた⁽⁷⁾。その結果を図6に示す。図6(a) からわかるように,スピンバルブ膜構造全体が明りょうに分析 できていることがわかる。NOL部分を膜平面で切り出し, 膜面上側から見たものを図6(b)に示す。Al₂O₃からなる 絶縁層の一部に,数nmの径からなる金属電流パスCuが上下 に貫通した構造を確認することができる。金属電流パスは 最大径のもので約5 nmであり,図5の高分解能電子顕微鏡 で確認された金属電流パス径とおおむね一致している。 更に,図5では確認することができなかった5 nmよりも小さな 金属電流パスについても、3次元アトムプローブ像では確認 できており,それによって金属電流パス分布状態も確認する ことができた。

(b) 電流狭窄型NOLスペーサ層を膜上方から見た像

図6. 電流狭窄型NOLを持つCPPスピンバルブ膜の3次元アトムプ ローブ写真 — 図5では5nm径の大きな金属電流パスしか観察され なかったのに対し、3次元アトムプローブではそれよりも微細な金属 パスや、膜面内での金属パス分布もわかる。

Three-dimensional atom probe image of CPP spin-valve film with current-confined-path NOL

4 あとがき

当社独自のNOL形成技術を用いることで,低抵抗と高い 抵抗変化量を両立した,電流狭窄型CPPスピンバルブ膜を 実現した。また,電流狭窄型NOLのナノ微細構造を直接 観察することに成功した。

このような複雑なナノ微細構造を極薄積層膜中に持つ 膜材料開発においては、ナノ構造観察・分析自体が非常に 困難となる。今後は、ますます最先端の分析技術まで踏み 込んだ膜材料開発を行う必要性がでてくる。

謝 辞

高分解能電子顕微鏡観察を行っていただいた物質・材料 研究機構の宝野和博氏,高橋有紀子氏,及び3次元アトム プローブ顕微鏡観察を行っていただいた Imago Scientific Instruments社のR. M. Ulfig氏, D. J. Larson氏に深く感謝いた します。

文 献

- (1) M. Takagishi, et al. "The applicability of CPP-GMR heads for magnetic recording". IEEE Trans Magn. 38, 2002, p.2277 2282.
- (2) H. Fukuzawa, et al. "Specular spin-valves with FeCo alloy by ion-assisted oxidation". J. Appl. Phys. 91, 2002, p.6684 - 6690.
- (3) H. Fukuzawa, et al. "MR ratio enhancement by NOL current-confinedpath structures in CPP spin valves". IEEE Trans Magn. 40, 2004, p.2236 - 2238.
- (4) H. Yuasa, et al. "Output enhancement of spin-valve giant magnetoresistance in current-perpendicular-to-plane geometry". J. Appl. Phys. 92, 2002, p.2646 - 2650.
- (5) H. Fukuzawa, et al. "Large magnetoresistance ratio of 10% by Fe₃₀Co₅₀ layers for current-confined-path current-perpendicular-to-plane giant magnetoresistance spin-valve films". Appl. Phys. Lett. 87, 2005, p.082507-1 - 082507-3.
- (6) H. Fukuzawa, et al. "Nanoconstricted structure for current-confinedpath in current-perpendicular-to-plane spin valves with high magnetoresistance". J. Appl. Phys. 97, 2005, p.10C509-1 - 10C509-3.
- (7) 福澤英明, ほか. "CCP-NOLを用いた CPP-GMR スピンバルブ膜". 日本応 用磁気学会誌. 29, 2005, p.869 - 877.

福澤 英明 FUKUZAWA Hideaki, D. Eng.

研究開発センター 記憶材料デバイスラボラトリー研究主務, 工博。磁性薄膜材料,磁気ヘッドの研究・開発に従事。 日本応用磁気学会、日本金属学会会員。 Storage Materials and Devices Lab.

湯浅 裕美 YUASA Hiromi

研究開発センター 記憶材料デバイスラボラトリー研究主務。 磁性薄膜材料,磁気ヘッドの研究・開発に従事。 日本応用磁気学会,日本物理学会会員。 Storage Materials and Devices Lab.

岩崎 仁志 IWASAKI Hitoshi

研究開発センター 記憶材料デバイスラボラトリー研究主幹。 磁気ヘッドの研究・開発に従事。日本応用磁気学会会員。 Storage Materials and Devices Lab.