レーザ超音波探傷技術の開発と 原子炉内保全への適用

Laser-Ultrasonic Nondestructive Testing and Its Application to Nuclear Industry

落合	誠	三浦	崇広	山本	智
OCHIAI Makoto		MIURA Takahiro		AMAMOTO Satoshi	

東芝は、遠隔から非接触で超音波信号を送受信することが可能なレーザ超音波法に着目し、それを応用した新しい探傷 技術を開発した。この技術によれば、深さ 0.1 mm という微小な表面亀裂を検出でき、更に、その亀裂深さが 0.5 mm 以上 の場合、標準偏差± 0.2 mm 以下という高い精度で深さを測定することができる。

当社は、この技術を適用した原子炉内構造物の探傷システムを開発し、実規模試験でその性能を検証した。この探傷システムは、2004年12月から国内の原子力発電所において、レーザ超音波法の世界初の探傷への応用として実適用を開始した。

Laser-ultrasonics is a novel technology that enables remote and noncontacting generation and detection of ultrasound. Toshiba has developed new nondestructive testing (NDT) techniques based on laser-ultrasonics. One of these techniques allows the detection of surface-breaking microcracks having a depth of 0.1 mm, and the measurement of their depth with an accuracy of 0.2 mm when the depth exceeds 0.5 mm. A laser-ultrasonic NDT system for nuclear reactor internals was developed and its performance was verified through full-scale mock-up experiments. The system has been applied to industrial nuclear power plants since December 2004.

1 まえがき

近年,国内外のいくつかの原子力発電プラントにおいて, 原子炉内構造物や配管の溶接部周辺に,応力腐食割れ (SCC)という種類の亀裂が発生したとの事例が報告されて いる。原子力発電の安全・信頼性をよりいっそう向上させて いくためには,設備や機器を適切な裕度をもって設計,運用 することが基本ではあるが,このSCCへの対策として,次の ような技術を準備し,適用していくことも重要である。

- (1) SCC発生を抑制する予防保全技術
- (2) SCC発生状況を把握する検査技術
- (3) SCC発生部位を補修する補修技術

原子炉内の構造物は運転中の中性子照射によってそれ自 体から放射線を放出するようになっており、また、点検時も稼 働時と同じように原子炉圧力容器の水中に設置されている。 したがって、作業員が直接アクセスすることは極めて困難で、 予防保全、検査、及び補修はすべて水中での遠隔作業とな り、それに対応できる高度な技術が要求される。

レーザ技術は, 計測や加工など幅広い産業分野において 利用されているが, 高出力で高品質なレーザ光をフレキシ ブルな光ファイバで伝送できることから, 遠隔作業にも適し ている。東芝はこの特長に着目し, 表面残留応力の改善 (レーザピーニング) や表面材質の改善(レーザ脱鋭敏化 処理)などレーザによる SCC の予防保全技術の開発に取り 組み, 既に実プラントへの適用を開始している⁽¹⁾。

当社はこれらの技術に続き、レーザによるSCCの検査を

実現するレーザ超音波探傷技術を開発してきた。ここでは, レーザ超音波探傷技術の概要と性能,及び原子炉内構造物 への適用について述べる。

2 レーザ超音波探傷技術

超音波技術は,構造物などの亀裂探傷や厚さ,液位,流量 などのプロセス測定手法として幅広く利用されている。通 常の超音波技術では,圧電素子と呼ばれる固体素子を用い て超音波信号を送受信する。この際,固体素子は液体媒質 を介して適切な条件で検査対象に接触させる必要があり, 一般に,曲面部や周辺の空きスペースが狭い場合,及び対 象に接液できない場合には,適用に工夫が必要であった。

一方,この送受信用の固体素子をレーザ光で置き換えた, レーザ超音波法という送受信技術が提案されている⁽²⁾。レーザ 超音波法によれば,接触が不要なことから複雑な形状の 検査対象にも対応でき,しかも細い光ファイバでレーザ光を 伝送することで,狭あいな部位にも適用できる。

以下にレーザ光による超音波の送受信技術(レーザ超音 波法),レーザ超音波法を用いた亀裂検査技術(レーザ超音 波探傷技術),及びレーザ超音波探傷技術の炉内構造物検 査への適用に関して述べる。

2.1 レーザによる超音波の送受信

レーザによる超音波の送信には,レーザ光が"高出力な光" であるという特長を利用する。

平均出力10W程度の中規模レーザ光源でも、その発振を

時間的に数nsオーダのパルス状に時間制御し,更に,その 照射スポットを空間的に口径1mmまで絞り込めば,集光点 に照射される瞬時最大パワー密度として数GW/cm²を実現 することができる。このようなレーザ光を材料に照射すると, そもそも入射パワーは10Wでしかないため材料全体を加熱 する効果はごく小さいが,材料表面の極微小領域を瞬間的 に加熱し,表層の数原子層をプラズマ化することが可能であ る。発生したプラズマが膨張する際,その反力として材料に 圧力が加わり,材料表面を伝播(でんぱ)する振動(表面波) 及び内部に伝播する振動(縦波と横波)が同時に発生するが, これらの振動には極めて広帯域な周波数成分が含まれると いう特徴がある。このように,レーザを照射するだけで超音 波を発生することができる。

一方, レーザによる超音波の受信には, レーザ光が "高品 質な光" であるという特長を利用する。

材料を伝播した超音波振動が材料表面に到達すると,到 達点がnm以下の微小な変位で振動する。ここで,超音波を 検出したい位置にレーザ光を照射すると,その反射光には 微小な光周波数遷移(ドップラーシフト)が発生する。レーザ光 の周波数と位相の安定度が十分高ければ,この微小な光周波 数遷移を,光の干渉効果を用いて計測することができる。この ようにすれば,レーザを照射し,その反射成分を干渉計で解析 することで,超音波信号を検出することができる。

このレーザによる超音波の送受信技術を組み合わせて使 用することで,従来は固体素子を接触しなければならなかっ た超音波信号の送受信を,2本のレーザ光を照射するだけで 実現することができるようになる。

2.2 レーザ超音波法を用いた亀裂探傷

レーザ超音波法によれば遠隔から非接触で超音波を送受 信することができる。当社は更に、レーザ超音波法で送受信 される超音波が広帯域であり、微小な亀裂と相互作用しや すい高周波数成分(短波長成分)を含むことに着目した。こ の特性を利用すれば、微小亀裂の検出と、その深さの高精 度測定ができるようになる。

以下に,当社が開発したレーザ超音波法による亀裂探傷 技術(レーザ超音波探傷技術)の概要を述べる。

2.2.1 レーザ超音波探傷装置の構成 レーザ超音波 探傷を実現する装置構成を図1に示す。超音波送信用の レーザ光源としては,発振エネルギーが約30mJ,パルス幅 が6~10nsのNd:YAGレーザ^(注1)を用いる。レーザ波長は, 対象が炉内の金属構造物である場合,水中で透過性の高い 532nmを用いることを標準としているが,対象により変更する 場合もある。このレーザ光は光ファイバで送信用照射ヘッド

まで導かれ、スポット径が約 φ 1 mm になるよう集光されて 検査対象物に照射される。一方,超音波受信用のレーザ 光源は波長 1,064 nm の Nd:YAG レーザであり、同様に光 ファイバで伝送され、受信用照射ヘッドで対象に照射される。 対象面で反射した光成分は同じ経路を経由して光干渉計に 導かれる。光干渉計で検出した超音波信号を信号収録・処理 装置で解析し、亀裂の有無と、亀裂があった場合にはその 深さを測定する。なお図1では、対象は水中に設置されて いるが、これは炉内環境を模擬するためであり、レーザ超音波 探傷技術は気中、水中いずれの環境に設置されている対象 にも適用することができる。

2.2.2 レーザ超音波探傷技術による表面検査 レーザ 超音波探傷技術によれば、対象表面、内部、裏面のいずれに 存在する欠陥も検査することができる。内部、裏面の欠陥 検査技術については既に報告している⁽³⁾ので、ここでは特に、 表面亀裂の検査技術について述べる。

対象表面に存在する亀裂を検査する場合は、レーザ照射 で発生した表面波を用いる。模式的に図2に示すように、対象 表面に亀裂がある場合、表面を伝播する表面波はその開口部 で反射され、受信レーザにより検出される。したがって、表面波 反射成分のありなしにより亀裂の有無を知ることができる。

一方,表面波信号の一部は亀裂を透過する。当社はこの 透過成分信号の周波数に着目した独自の亀裂深さ測定技術 を開発した⁽⁴⁾。開発した技術の性能の一例を図3に示す。こ こで,放電加工スリットは人為的に形成した矩形(くけい)状 の溝であり,また,SCCは応力を与えた試験片を腐食性薬品 中に浸せきして発生させた実物に近い亀裂である。縦軸は この手法で測定した亀裂深さ(測定値)であり,横軸は,試験後 に亀裂部分を切断し,顕微鏡で測定した亀裂深さ(真値)で

⁽注1) ネオジウム (Nd)を含むイットリウム (Y) - アルミニウム (Al) -ガーネット結晶を用いたレーザ。

ある。図から明らかなように、この手法によれば、SCC(開口 幅約20 μm,代表深さ約1 mm)を含む微小亀裂の深さを、 標準偏差±0.2 mm以下という高い精度で測定することがで きる。

3 レーザ超音波探傷技術の炉内構造物検査への適用

前述のようなレーザ超音波探傷技術の開発は既に完了しており、個々のアプリケーションに応じた適用の段階にある。 ここでは一例として、加圧水型原子炉 (PWR)の炉内構造物 へ適用した例につき説明する。

PWR 炉底部には炉内計装筒 (BMI)という炉内の計測器 案内管が溶接設置されている。近年,海外のPWR プラント

において,この細管部位にSCCと推定される亀裂が発生し, 炉水が炉外に漏れるという事象が発生した。この事象を受け, PWR原子力発電所を持つ国内の各電力各社は,この部位の 検査と予防保全に大きな関心を寄せている。そこで当社は, レーザ超音波探傷技術をこの部位に適用すべく,探傷システ ムを開発した。このシステムは,次の六つの部分から構成さ れる(図4)。

- (1) レーザシステム
- (2) 制御装置
- (3) 光ファイバ(レーザ伝送システム)
- (4) 施工装置(照射ヘッドを含む)
- (5) 作業台車
- (6) 照射ヘッド

レーザシステムと制御装置はオペレーションフロアと呼ば れる上層部に設置され、レーザシステムから発振した送信・ 受信レーザ光は、長さ約40mの光ファイバで炉底部の検査 部位まで伝送される。施工装置は作業台車から炉底部に向 けてつり下げられ、BMIの頂部に設置・固定される。施工 装置には光ファイバで導かれた送信、受信の2本のレーザ ビームを対象面に照射する照射ヘッドが搭載されており、こ の照射ヘッドがBMI内面に挿入されて内面を検査するシス テムとなっている。

このBMIは内径9.5 mmという細管であるため,新たに小型照射ヘッドを開発して適用した。開発した小型照射ヘッド の外観を図5に示す。このシステムにおいては,省スペースの 観点から,レーザ超音波探傷の標準構成である送信・受信 レーザを個別伝送するファイバ2本構成(図1)ではなく,同一 の光ファイバで伝送するファイバ1本構成を採用している。 同一の光ファイバで伝送された送信・受信レーザは,小型

照射ヘッド内部に設置された波長選択型ミラーで分岐され, それぞれ検査対象表面に照射される。小型照射ヘッドは施工 装置に備えられた軸・周方向走査機構によりらせん状に走査 し,BMI内面をもれなく検査する構成となっている。これら 一連の動作と,探傷信号の収録や処理は制御装置で行う。

このシステムのプロトタイプを試作し,実規模BMI試験設備で検証試験を実施した(図6)。実規模BMI試験は,水深約20mの位置に実物大のBMI試験体を設置して実施した。 その内面には深さ0.4 mm,0.8 mm,1.2 mm,及び1.6 mmの 四つの亀裂を加工してあり,それらの亀裂深さの測定結果 を図3に▲で示す。これら測定値は真値とよく一致しており, このシステムがBMI内面検査装置として十分な性能を備え ていることを確認した。

なおこのシステムは,送信レーザ光の照射条件を変更する だけで,検査から予防保全(レーザピーニング)へとその機 能を容易に変更することができる構成となっている。

置と,水深約20mに実物大のBMI試験体を設置して実施したようす。 Appearance of remote handling equipment and full-scale mock-up experiment

4 あとがき

従来,対象物に液体媒質を介して固体素子を接触させ送 受信していた超音波信号を,遠隔で非接触,かつ,液体媒質 なしで送受信できるレーザ超音波法に着目し,その亀裂探傷 への応用技術を開発した。

開発した技術によれば,表面亀裂の場合,深さ0.1 mmの 微小亀裂から検出が可能であり,更に,深さが0.5 mm以上 の場合,標準偏差±0.2 mm以下という高い精度で深さを測 定することができる。この検査技術を適用したPWR内構造 物用の探傷システムを構築し,実規模試験を通じてその性能 を検証した。この探傷システムは,2004年12月に,国内 PWRプラントにおいて,世界初のレーザ超音波法の探傷 応用として実適用を開始した。

なお,ここでは,PWR 炉内構造物検査へのレーザ超音波 法の適用を中心に述べたが,レーザ超音波法はそのほかに も,移動物体及び高温物体など液体媒質の塗布や固体素子 の接触が困難な対象の非破壊検査,板厚測定,温度測定や, 材料の弾性,組織,粒径など材料特性の測定などへの展開 も期待できる。

今後,原子力プラントにおける非破壊検査技術としての 実績の拡大を図るとともに,一般プラントや,更には鉄鋼, 自動車,航空機などの他産業分野においても特長ある検査・ 計測技術として適用が進むように,更なる技術改良と実用化 に取り組んでいく。

文 献

- (1) 前川 治,ほか.先端技術による原子炉保全の展開.東芝レビュー.57,4,2002, p.15-18.
- (2) Scruby, C.B., et al. Laser-ultrasonics: techniques and applications. Bristol, Adam Hilger, 1990, 447p.
- (3) Ochiai, M., et al. Detection and characterization of discontinuities in stainless steel by the laser ultrasonic synthetic aperture focusing technique. Materials Evaluation. 62, 4, 2004, p.450 - 459.
- (4) 落合 誠, ほか. レーザ励起広帯域表面波を用いた微小き裂サイジング手法.
 日本原子力学会誌. 43, 3, 2001, p.275-281.

落合 誠 OCHIAI Makoto

電力・社会システム社 電力・社会システム技術開発センター 計測・検査技術開発部主務。光と超音波を応用した検査・計測 技術の開発に従事。日本原子力学会,非破壊検査協会会員。 Power and Industrial Systems Research and Development Center

三浦 崇広 MIURA Takahiro

電力・社会システム社電力・社会システム技術開発センター 計測・検査技術開発部。光と超音波を応用した検査・計測 技術の開発に従事。日本原子力学会,非破壊検査協会会員。 Power and Industrial Systems Research and Development Center

山本 智 YAMAMOTO Satoshi

電力・社会システム社 磯子エンジニアリングセンター 原子力 機器設計部主務。原子力発電所設備の点検・検査技術の開発, 装置設計,施工業務に従事。日本機械学会会員。 Isogo Nuclear Engineering Center