24/36 kV 固体絶縁スイッチギヤ

24/36 kV Solid-Insulated Switchgear

藤井 茂良	阪口 修	佐藤	純一
FUJII Shigeyoshi	SAKAGUCHI Os	amu SATO	Junichi

東芝は, 六フッ化硫黄 (SF₆) ガスをまったく使用せずガス絶縁スイッチギヤ (C-GIS) より小型・軽量化を実現した, 環境調和型の新しいタイプの 24/36 kV 固体絶縁スイッチギヤ (SIS) を開発した。

これまで、中圧クラスのスイッチギヤでは、SF₆ガスの優れた絶縁性能を使用した C-GIS が主流となっている。 しかし、1997年12月に開催された地球温暖化防止京都会議 (COP3) において、SF₆ガスは排出抑制対象ガスの一つ として指定された。このため、SF₆ガスを使用しないスイッチギヤが望まれていた。

Toshiba has developed a 24/36 kV solid-insulated switchgear (SIS) as the next-generation type switchgear. This switchgear is smaller and lighter than the cubicle type gas-insulated switchgear (C-GIS), in addition to being free from SF_{6} .

We have been generally using C-GIS for medium-voltage switchgears up to now. The use of C-GIS contributed to the minimization of size because of the higher dielectric strength of SF_6 . However, SF_6 was placed on the list of greenhouse gases under the Kyoto Protocol in 1997. This resulted in demand for a switchgear that uses no SF_6 .

まえがき

社会インフラである電力の安定供給のために必要不可欠 な製品の一つであるスイッチギヤが、1890年ころに誕生して 以来,既に100年が経過している。この間,中圧スイッチ ギヤの形態は世の中のニーズへの対応と技術進歩に応じて, 開放型→ハウジング型→金属閉鎖型→密閉型へと変化し, 小型大容量化,耐環境性向上,環境調和,安全性の向上 及び省メンテナンス化が図られてきた。

スイッチギヤの形態が大きく変化発展してきた要因の一つ として,絶縁技術の向上によることが大きい。これまで,ス イッチギヤに適用されてきた主絶縁方式は,気中絶縁方式→ 気中複合絶縁方式(バリヤ,被覆絶縁方式)→SF₆ガス絶縁方 式へと変化し,絶縁耐力の向上とともに機器の小型化に貢献 してきた。現在,中圧スイッチギヤの主流は,SF₆ガスの優れ た絶縁性能を利用したガス絶縁スイッチギヤ(C-GIS)である。

SF₆ガスは無毒,無臭,不活性,不燃性の気体で,絶縁耐 力と消弧能力が実用上もっとも優れていることから,受変電 機器の絶縁媒体,消弧媒体として幅広く使用されている。 また,非常に安定した気体であり大気寿命は3,200年と長い。 しかし,赤外線吸収量が大きいため,地球温暖化係数(GWP) が二酸化炭素(CO₂)ガスの23,900倍と大きいことから,1997年 に開催された地球温暖化防止京都会議(COP3)において 排出抑制対象ガスの一つとして指定された。このことから, SF₆ガスを使用しない環境調和型スイッチギヤの技術開発, 製品開発が望まれていた⁽¹⁾⁻⁽⁵⁾。 このような背景から東芝は、2002年にSF₆ガスをまったく使 用せず、大幅な小型化を実現した24kV固体絶縁スイッチギヤ (SIS)を製品化し、更に2004年に36kV-SISも製品化した。この SISは、SF₆ガスより絶縁性能が優れたエポキシ樹脂で、真空 バルブを含む主回路部をモールドすることにより構成したもの である。主絶縁媒体となるエポキシ樹脂は、信頼性の高い注型 品とするために、耐熱性、耐靭性(じんせい)、機械的強度を向 上させた樹脂である⁽⁶⁾。ここでは、SISに適用したエポキシ樹 脂の絶縁特性と長期絶縁信頼性の検証結果について述べる。

2 SISの概要

36 kV-SISの代表的な構造を図1に、SISの仕様を表1に

表1. SISの仕様 Specifications of SIS						
項目		仕様				
定格電圧		24 kV	36 kV			
宁妆耐雨口	雷インパルス	125 kV (DS 極間: 145 kV)	170 kV (DS極間:195 kV)			
正恰 刚 電圧	商用周波	50 kV (DS 極間: 60 kV)	70 kV (DS 極間: 80 kV)			
定格周波数		50/60 Hz				
定格電流		630/1,250 A				
定格母線電波	តិ	630/1,250 A				
定格短時間而	討電流	25 kA				
適用規格		JIS, JEC, JEM, IEC				
DS :断路器 JEC :電気学会 電気規格調査会標準規格 JEM :日本電機工業会規格 IEC :国際電気標準会議規格						

示す。SISは、断路器本体と遮断器本体には真空絶縁を 採用し、断路器用真空バルブと遮断器用真空バルブを含む 主回路導体をエポキシ樹脂でモールドすることにより、SF6 ガスフリーを実現した。更に,主回路構造の簡素化,完全相 分離,外層シールドの採用により小型・軽量化を図った。

3 SIS を実現した絶縁技術

3.1 エポキシ樹脂の絶縁特性

SISに適用したエポキシ樹脂の顕微鏡モデルを図2に示す。 この材料は,耐熱エポキシ樹脂成分に粒径の異なる真球 状シリカを充填(じゅうてん)し,更に,ゴム粒子を充填する ことにより,耐熱性,耐靭性,機械的強度を向上させたもの である。これにより,エポキシ樹脂と線膨張率が大きく異な るセラミック容器を絶縁容器として用いている真空バルブの 直接モールドを可能とした。

SISに適用したエポキシ樹脂を選定するために,供試モデ ルを使い,絶縁破壊特性試験を実施した。エポキシ樹脂の 絶縁破壊特性を調査した供試モデルを図3に示す。供試モ

Epoxy resin applied to SIS

デルは、直径80 mm、高さ100 mmのエポキシ樹脂注型品で、 直径40 mmの電極をギャップ長3 mmとして埋め込んだモデ ルである。埋込み電極の表面は、実機と同様にサンドブラ スト処理を施した。試料Aは酸化アルミを充填したもの、試 料Bは真球状シリカを充填したもの、試料Cは真球状シリ カ+ゴムを充填したものである。試験電圧は、50 kVrmsか ら10 kVrms、1分間ステップで絶縁破壊するまで上昇させ た。なお、試料Aのデータは文献(7)によった。試験雰囲気は 0.4 MPaの高気圧 SF₆ガス中で行い、エポキシ樹脂外部での 閃絡(せんらく)を防止した。

絶縁破壊電圧のワイブル分布特性を図4に示す。図の横軸 は絶縁破壊電圧,縦軸は累積確率である。図中の■印は試 料A,▲印は試料B,●印は試料Cのデータである。試料A,

試料B, 試料Cの50%絶縁破壊電圧V₅₀は, それぞれ139kV, 196kV, 213kVであり, 試料Cは試料Aに対して約1.5倍, 試料Bに対して約1.1倍の高い絶縁性能を示した。絶縁破壊 のばらつきは, どの試料ともほとんど変わらなかった。エポ キシ樹脂内部のトリー進展は, 充填材に衝突した後, 充填材 と樹脂との界面を進展するとの報告がある⁽⁸⁾。これにより試 料Cの破壊電圧が向上した理由は, 真球状シリカとゴムを充 填したことにより, エポキシ樹脂と充填材との界面長が長く なったためであると考えられる。

3.2 モールド真空バルブ

エポキシ樹脂の高い絶縁性能のみに依存することなく,固 体内部の電界集中と応力集中を緩和することは,絶縁物の信 頼性を向上するうえで重要である。

モールド真空バルブのセラミック両端部には真空封着のた めのメタライズ層が形成されており、この部分にセラミック、 エポキシ樹脂、メタライズ層のトリプルジャンクションが形成 される。この部分は、電界集中だけでなくモールド時の応力 集中も起きやすい。

Equipotential distribution of molded vacuum interrupter

モールド真空バルブの等電位分布を図5に示す。図5(a) はセラミック両端部になにもしない場合,図5(b)はシールド を施した場合である。エポキシ樹脂外層面にシールドを施 したモールド真空バルブに比べ,セラミック端部に何もしな い場合は,セラミック端部の電界集中が特に顕著になる。セ ラミック端部にシールドを施した場合の最大電界強度(E)と モールドによる最大残留応力(P)の抑制効果を図6に示す。 セラミック端部にシールドを設けることにより,最大電界強度 はセラミック端部のトリプルジャンクションからシールド先端部 へと移行し,約33%に低減することができた。また,応力解 析を行った結果,セラミック端部の最大残留応力は、シール ド先端部へと移行し,約55%に低減することができた。

セラミック沿面の電界強度をシールドの有無で比較した (図7)。横軸はセラミック沿面の位置(L)を示し、L=0は図5 のA点(固定側セラミック端部)、L=1は図5のB点(可動側 セラミック端部)である。図7に示すように、沿面の電界強度 においても、シールドの効果により端部の電界強度を低減す ることができ、最大値も約30%に低減できることがわかった。

最大電界強度,最大残留応力とも低減できる。

Effect of shield for molded vacuum interrupter

4 長期絶縁信頼性

SISの長期絶縁信頼性を検証するために,半年間の長期 課電試験を実施した。屋外に設置した24 kV-SISに,電圧 50 kV-1分間の耐圧試験を実施した後,電圧 23 kVを半年 間印加した。

試験結果を図8に示す。図の矢印は絶縁破壊していない ことを示す。一般に印加電圧(V)と絶縁破壊時間(t:絶縁寿 命)との関係はt = A・V⁻ⁿ(Aは定数,nはV-tの傾き)で示 す逆n乗則が成り立つことが知られており,エポキシ樹脂の n値t n = 16と報告されている⁽⁹⁾。したがって,この試験に より30年後,1.4E(運転電圧を1.0Eとする)を課電しても耐 えうることが推定される。図8に示すように,いずれの試験に おいても絶縁破壊は見られなかった。また,長期課電試験 前後に部分放電試験を実施したが,部分放電特性に変化は 見られなかった。更に,半年間の課電後に50kV-1分耐圧 試験を実施したが,異常は見られなかった。

以上のように、SISの長期絶縁信頼性は十分な性能である ことを確認した。これによりSISの高電圧化が検証され、 24 kV-SISに引き続き、36 kV-SISも開発した(図9)。

5 あとがき

当社は、排出抑制対象ガスであるSF₆ガスをまったく使用 せず小型化を実現したSISを開発した。これはSF₆ガスより も絶縁性能が優れたエポキシ樹脂で真空バルブを含む主回 路部をモールドすることにより実現したものである。既に、 エポキシ樹脂の絶縁特性と長期絶縁信頼性の検証を完了 し、24 kV-SIS に引き続き36 kV-SIS も製品化している。 今後も技術開発に取り組み、信頼性と安全性の向上を図り、 環境を考慮した製品開発を行っていく。

文 献

- (1) 六戸敏昭,ほか."高気圧N2ガス絶縁による24 kV C-GISの開発".平成 15 年電気学会全国大会.6-207,2003,p.353-354.
- (2) 佐藤伸治,ほか.脱SF。ガス形24kV開閉装置に搭載の多機能真空パルプ 向け真空絶縁技術の開発.電気学会論文誌B.123,4,2003,p.442・449.
- (3) 佐藤伸治,ほか.SF₀ガスフリーの新型24 kVスイッチギヤ.電気評論.86, 3,2001,p.19-22.
- (4) SATO, J., et al." New Technology for Medium Voltage Solid Insulated Switchgear ". Proc. of IEEE/PES T&D Conference. 2002, p.1791 - 1796.
- (5) SIOIRI, T., et al." Investigation of Dielectric Breakdown Probability Distribution for Vacuum Disconnecting Switch " Proc. of IEEE/PES T&D Conference. 2002, p.1780 - 1785.
- (6) SHIMIZU, T., et al." Material and Simulation Technology for Solid Insulated Switchgear ". Proc. of the 17th ICPADM. 2003, p.1194 - 1197.
- (7) 青柳浩邦,ほか.GISスペーサ内部モデルの長時間 V-t特性.電気学会 論文誌B.117-B,2,p.210-215.
- (8) 固体絶縁材料の界面効果調査専門委員会.固体絶縁材料の界面効果. 電気学会技術報告第488号.1994, p.20.
- (9) 青柳邦弘, ほか."エポキシ注型品の実用状態における長時間 V-t特性".
 絶縁材料研究会資料.EIM-77-14, 1997, p.1 10.

36 kV SIS

電力・社会システム社 社会システム事業部 施設システム 技術第一部主務。官公制御システムのエンジニアリング業務 に従事。電気設備学会会員。 Infrastructure Systems Div.

版口 修 SAKAGUCHI Osamu

電力・社会システム社 府中電力・社会システム工場 スイッチ ギヤ部主務。密閉型スイッチギヤの開発・設計に従事。電気 学会会員。

Fuchu Operations - Industrial and Power Systems & Services

佐藤 純一 SATO Junichi

電力・社会システム社 電力・社会システム技術開発センター 電機応用システム開発部主務。密閉型スイッチギヤの研究・ 開発に従事。電気学会会員。

Power and Industrial Systems Research and Development Center