半導体プロセスを仮想設計する TCAD シミュレーション

TCAD Simulation for Virtual Design of Semiconductor Processes

尾上 誠司 西谷 和人 **ONOUE** Seiji

NISHITANI Kazuhito

高木 茂行 TAKAGI Shigeyuki

半導体デバイスの微細化に伴うプロセスの高度化と工程数増加による開発期間の長期化が問題となってきている。こ の開発効率向上のため, TCAD(Technology CAD)による試作回数の削減が期待されているが, 市販のTCADでは加 工形状を精度良く予測できない。

東芝は,プラズマ診断・表面分析技術を元にプロセスのモデル化を行い,シミュレーションに組み込んだ。プラズマ から表面反応までを一貫してモデル化することで,予測性能と実用性が極めて高い独自コードの開発に成功した。RIE (Reactive Ion Etching)やCVD(Chemical Vapor Deposition), スパッタにシミュレーションを適用し, 試作回 数を絞り込むことで開発期間の大幅な短縮を図っている。

The development time for new semiconductor devices is becoming longer, accompanying the shrinkage of design rules, strict process specifications, and increase in the number of process steps. In order to reduce the development time, a decrease in the number of experiments is strongly desired. Technology CAD (TCAD) is one possible candidate to improve the efficiency of development by simulating processes virtually. However, topography simulation, one part of TCAD, has not been widely used due to its inability to deal with complex chemical reactions.

Toshiba has therefore been developing new topography simulation models based on plasma diagnosis and surface analysis. We have been successfully applying these models to semiconductor processes to reduce the development time.

まえがき

半導体デバイスでは,素子の高集積化と高速化を実現す るため、微細化が急速に進んでいる。微細化寸法を決定す る素子のデザインルールは0.1 µmを切るところまできてい る。このため,各ユニットプロセスに求められる技術的ハー ドルが高くなると同時に,工程数は増加し,開発期間は長期 化している。この開発期間を短縮するためには,効率の良 いプロセス開発と試作回数の削減が不可欠であり,TCAD シミュレーションによる開発方針の方向付けと試作回数の削 減が期待されている。

TCADとは、半導体デバイス・プロセスを開発するための シミュレーションである。その構成は、半導体プロセスの熱 プロセス,素子形状,デバイス電気特性に対応し,プロセス, 形状、デバイスシミュレーションから成っている。このうち、 プロセス・デバイスシミュレーションは実用的なモデルが市 販され,デバイス開発に広く使われてきた。一方,TCAD形 状シミュレーションには,市販レベルで実用的なモデルがな く,加工形状が正確に予測できないため,プロセス開発には 十分使用できなかった。

通常の半導体プロセスにはプラズマが多く用いられ、プラ ズマで生成された活性種がウェーハに輸送され,その表面

での物理化学反応で微細加工が進む。この反応が極めて複 雑なため,プロセス条件に対する加工形状を正確にシミュ レーションするには,活性種の生成,輸送,表面反応を計算 することが必要不可欠である。

そこで図1に示したような、プラズマ診断、表面分析、プロ セス要素技術を駆使し、プラズマで生成した活性種が輸送 され,表面で反応して形状が変化する現象をモデル化した。

これらプラズマ生成,活性種輸送,表面反応をシミュレーション に組み込み統合することで,高精度な形状シミュレーション を実現し,活性種の生成,輸送,表面反応を通して計算する ことができるようになった。更に,開発した形状シミュレー ションとTCADのプロセスシミュレーションを組み合わせ, 連続工程シミュレーションも可能にした。

今回は,形状シミュレーションの中で,微細化のキー技術 である酸化膜のドライエッチング(RIE)シミュレーションに焦 点を当て,そのシミュレーション技術について述べる。

2 形状シミュレーションモデル

形状シミュレーションの流れを図2に示す。シミュレーション では,装置及びプロセス条件を入力し,加工形状を出力す る。計算の流れとしては,まずプラズマシミュレーションでイ オン,ラジカルなど活性種の密度やその運動エネルギーを求 める。次に,ウェーハ近傍のシース領域と呼ばれる部分で の活性種の輸送をシースシミュレーションで計算する。ここ では,電子密度や電位が大きく変化する領域でのイオンが加 速される挙動を求め,基板への入射角度や入射エネルギー 分布を計算する。最後に表面反応シミュレーションで,基板 表面での反応を計算し,加工形状を求める。開発したシ ミュレーションの特長は,すべての計算で原子・分子の動き を正確に再現したモンテカルロ法を使用し,プラズマ診断や 表面分析の実データを組み込むことで,高精度化を行ってい る点である。次に,特に重要なプラズマシミュレーションと 表面反応シミュレーションについて説明する。

2.1 プラズマシミュレーション

プラズマシミュレーションではプロセスチャンバ内の電子 やイオンの密度分布を求めることができる。最初に,ポアソン 方程式から電界分布を求め、イオン、電子の空間分布をPIC-MCC(Particle-In-Cell Monte Carlo Collision)法で計算する。

PIC-MCC法では、プラズマ中の荷電粒子を超粒子と呼ば れる粒子で代表させ、数千から数十万個の超粒子の軌跡を 追跡することでプラズマ全体の挙動をシミュレーションする。 粒子の速度や位置は以下の方程式から計算する。

$$m\frac{\mathrm{d}v}{\mathrm{d}t} = q(E + V \times B) \tag{1}$$

m:荷電粒子の質量 q:電荷

v:荷電粒子の速度 E:電界 B:磁界

一方,時間間隔 t内の荷電粒子と中性原子・分子との衝突確率Pは以下の式から求められる。

 $P = 1 - \exp((v)vN t)$ (2)

(v): 衝突の全断面積

v : 衝突を起こす粒子の相対速度

N:中性ガスの密度

式(1)により電界 E及び磁界 Bから受ける力が計算されて t後の位置が求められ,式(2)により衝突判定が行われ, 順次計算が進められる。

酸化膜RIEで使用される平行平板型プラズマ装置でのプ ラズマシミュレーションの結果を図3に示す。この結果では, 装置内のウェーハステージ中心部の周辺でプラズマ密度が 高くなること,ウェーハステージの外側へプラズマが広がる ことが再現できている。また,形状シミュレーションに必要 な活性種やイオンの密度や速度が計算できる。

2.2 表面反応シミュレーション

表面反応シミュレーションでは、プラズマシミュレーションと、 シースシミュレーションから求めたイオン密度、ラジカル密度 と、これらがウェーハに入射するときの入射エネルギー、入 射角を元に、ウェーハ表面での微細な加工形状を計算する。 シリコン酸化膜(SiO2)RIEで用いられるペルフルオロシ

クロペンテン(C_5F_8)と酸素(O_2)の混合ガスの反応モデルに ついて説明する。ここでは、プラズマ中で生成された CF_2 ラ ジカル、 CF_3^+ イオン、Oラジカルの3種類の活性種について 図4の反応モデルを考えている。表面反応は、① CF_2 のSiO₂ 表面への吸着、②SiO₂膜中で活性層を形成しその上にポリ マー層が堆積(たいせき)、③Oによる炭素(C)の引抜きと 気化、④ CF_3^+ イオンエネルギーによる活性層の除去、という ステップで進むとしている。このモデルでは、エッチング反 応領域に活性層とポリマー層が存在し、イオンエネルギーは ポリマー層を介して活性層に伝播(でんぱ)される。

3 シミュレーション結果

実際の酸化膜コンタクトホールのエッチング断面形状と, それに対応するシミュレーション結果を図5に示す。エッチ ング形状の評価に用いたサンプルは,Si基板上にシリコン 窒化膜(SiN)/SiO₂/レジストを成膜したものである。

SiO₂厚はセンタ条件で1,700 nm とし,深穴の実験のため 3,000 nmまで厚膜化した。レジストには穴径700 nm,テーパ 角89 °の穴がパターニングされている。レジスト及びその下 部分の側壁にはポリマーが付着している。中央の図がセン タ条件の結果で,レジストテーパ形状,レジスト下のボウイン グ(弓なり)形状,先端のテーパ形状がよく再現されている。 左右の図は,C₅F₈流量,O₂流量を2倍にした計算結果であ る。C₅F₈流量2倍では,ポリマー層で生成するフロロカーボ ンが多くなり,エッチングストップが発生している。また,O₂ 流量アップでは,Oによるフロロカーボンの引抜きが増加し, レジストの下のボウイングが横方向に大きくなっている。こ れらの傾向が,実験結果と一致することを確認しており,酸 化膜RIEのモデリングを完成している。

4 プロセスへの適用

酸化膜 RIE では穴が深くなるとエッチングレートが低下 し、エッチングストップが発生する。また、ボトム径が小さい とコンタクト抵抗が大きくなり、デバイス特性は悪化する。そ のため、酸化膜 RIE ではエッチング深さ限界や、エッチング 深さとボトム径の関係を定量化することが非常に重要とな る。そこで、評価回数を削減するため、シミュレーションによ リエッチング深さの推移、ボトム径とエッチング深さの関係 を調べた。

4.1 エッチング形状と深さの推移

SiO2膜の膜厚を3.0 µmとし,エッチング時間(T)に対する エッチング形状の推移をシミュレーションで調べた。この結 果を図6に示す。エッチング開始75s後,穴の深さ0.5µm以 上で,レジストの下部にボウイングが発生し始めている。

更に長いエッチング時間250sでは,先端のフラット部分が なくなり始めている。380s後でエッチング深さを比較すると, シミュレーションで2.12 µm,実験で2.05 µmである。エッチ ングの先端が細くなりフラット部分がなくなっているのも,実 験結果とよく一致している。

図7はエッチング時間とエッチング深さの関係を示している。上述したようにシミュレーション結果と実験結果はよく一致している。また、この図から穴の深さとともにエッチングレートは徐々に低下する傾向にあるが、2.0 µm以上の深さでもエッチングストップすることなくエッチングが進んでいる。シミュレーションにより穴深さの定量的評価、エッチングの先端形状が計算でき、加工限界深さの評価に用いている。

4.2 ボトム径の SiO₂ 膜厚依存性

次に Si 基板上に SiN/SiO₂/レジスト 膜を成膜した構造で, SiO2膜厚を1.7,2.0,2.5,3.0 µmと変化させた時のボトム径 の評価を行った。計算は、エッチングがSiN 膜に達した時間 に対し20%のオーバーエッチングをかけた条件で行ってい る。図8は計算結果で,SiO2膜が厚くなるにつれて,ボトム 径が小さくなっていることがわかる。図中の は,2.8 µmの SiO, 膜での実験結果であるが、シミュレーション結果とよく 一致している。この結果から,所定のボトム径を得るための 深さ限界が予測できる。これによって,デバイス特性の一つ であるコンタクト抵抗に大きな影響を及ぼすボトム径とエッ チング深さの関係を明確にし,試作回数を大幅に削減できた。

あとがき 5

プラズマシミュレーション、シースシミュレーション、表面反 応シミュレーションを統合したRIEの形状シミュレーション を開発した。C₅F₈とO₂の混合ガスを用いる酸化膜RIEに適 用し,SiO2側壁のボウイング形状,ボトム付近のテーパ形状 を再現できた。更に、 C_5F_8 、 O_2 ガス流量依存性、深さやボト ム径の時間依存性の予測が可能であるため,極めて実用性 の高いシミュレーションと言える。

今回述べた酸化膜RIEだけでなく,単結晶シリコン(Si)や 多結晶シリコン(Poly-Si)などのRIE, CVD, スパッタプロセ スのモデル化も終えている。現在は、これらのシミュレーショ ンを連続して用いることで、モジュールプロセスの仮想設計 に活用している。

尾上 誠司 ONOUE Seiji 半導体・液晶プロセスの形状シミュレーション技術開発に従

生産技術センター プロセス研究センター研究主務。 事。応用物理学会会員。 Process Research Center 西谷 和人 NISHITANI Kazuhito

生産技術センター プロセス研究センター。 半導体・液晶プロセスのプロセスシミュレーション技術の開発 に従事。応用物理学会会員。 Process Research Center

高木 茂行 TAKAGI Shigeyuki, Ph. D. 生産技術センター プロセス研究センター主任研究員,工博, 技術士(電気・電子)。半導体・液晶プロセスのCAE・TCAD 技術開発に従事。応用物理学会,電気学会会員。 Process Research Center