
1．まえがき

近年，IoTデバイスの普及に伴い，現場側のIoTデバ
イスで処理を行うエッジコンピューティングの重要性が急
速に高まっている。IoTデバイスには，センサーやアクチュ
エーターを通じて物理環境と直接やり取りし，リアルタイム
で意思決定を行う能力が求められる。このような背景の中，
MCUは，低消費電力・低コスト・小型設計といった特性
を備え，IoTシステムの中核を担うプラットフォームとして注
目されている。
一方， AI技術の進展により，これまでクラウドサーバーで
実行されていたAIアルゴリズムを，MCU上で実行すること
が可能になりつつある（ここでは，AIは，識別・検出・予
測を目的とした深層学習を想定している）。このMCUの活
用により，IoTデバイスは高度な機能を持つようになり，ユー
ザーインターフェースの向上や新たなアプリケーションの創
出が期待される。
IoTデバイスの多くは，コストや消費電力の制約が厳しい
環境で動作するため，MCUのようなプラットフォームが必

要不可欠である。また，MCUは，汎用性があり，特定用
途向けのカスタマイズが容易なため，様々なアプリケーショ
ンに適応可能である。更に，MCUにAIを実装することは，
以下のような具体的な利点をもたらす。
⑴　レイテンシー（遅延）の低減　　クラウドサーバーと
の間でデータを送受信する時間を削減し，リアルタイム
性が求められるアプリケーションで確実な応答を実現
する。
⑵　プライバシーとセキュリティー　　ローカル（デバイス
側）で実行するため，機密情報の共有を回避し，ユー
ザーのプライバシーを保護できる。
⑶　電力効率　　クラウドサーバーとのデータ送受信時
の電力消費を削減し，より効率的なデバイス運用を可
能にする。

しかし，AIのモデル（入力から出力への複雑な関係を表
現する多層ニューラルネットワーク）は，重み係数の数が膨
大になるため，MCUへの実装には，モデルの圧縮が重要と
なる。
これに対して，東芝デバイス＆ストレージ（株）は，MCU
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IoT（Internet of Things）デバイスの普及に伴い，エッジコンピューティングの重要性が高まる中で，低消費電力・低
コスト・小型設計を特徴とするMCU（マイクロコントローラーユニット）は，IoTシステムの中核を担うプラットフォームと
して注目されている。
東芝デバイス＆ストレージ（株）は，MCUにAIを実装する有用性に着目し，OSS（オープンソースソフトウェア）を活用

したMCU向けAI開発環境を構築している。AIのモデルは，重み係数の数が膨大になるため，学習可能なテンソル列（TT：
Tensor Train）分解⑴ネットワークに基づく圧縮技術を開発・導入して，モデルの推論精度を維持しながら，モデルサイズ
と計算負荷の削減に取り組んでいる。これにより，エッジデバイス上でのリアルタイムAI推論の実用化を促進する有効な
アプローチを実現する。

With edge computing becoming more important due to advancements in Internet of Things (IoT) devices, demand is increasing for compact, low 

power consumption, and low cost microcontroller units (MCUs), which are a key platform of IoT systems.

Toshiba Electronic Devices & Storage Corporation has built an artificial intelligence (AI) development environment focusing on the usability of AI 

on MCU, which is capable thanks to open-source soft ware (OSS). We have also developed and introduced new compression technology based on 

the trainable tensor-train decomposition network (TTD-Net) to reduce both the size of AI models including a large number of weight coeff icients 

and the computational load while maintaining inference accuracy. Our approach contributes to making practical use of real-time AI inference on 

edge devices.



向けAI開発環境の構築を進め，TT分解に基づく圧縮技術
を開発した。この技術を導入することで，AIモデルの推論
精度（以下，精度と略記）を維持しながら，モデルサイズと
計算負荷の削減に取り組んでいる。
この論文では，まず，MCUにAIを実装するためのAI開
発環境，及び従来のモデル圧縮技術に関して述べる。更
に，TT分解に基づくモデル圧縮技術について述べる。

2．MCUへのAI実装のための開発環境

2.1　MCU向けAI開発手順
MCU向けAIの開発は，一例として，図1のように，以
下の手順で進められる。
⑴　適用対象の特定，モデルの選定，及び関連データ
の収集　　人物検出などのAIの適用対象を特定する。
また，モデルを選定し，必要な関連データを収集する。
⑵　モデルの学習　　TensorFlow ™などのオープンソー
スフレームワークを用い，重み係数や演算が浮動小数
点形式であるモデルを生成する。
⑶　モデルの圧縮　　学習済みのモデルを圧縮する。
⑷　int8（符号付き8ビット整数）形式への量子化変換
　　学習済みのモデルを，TensorFlow™のモデル変換用
ツールであるTFLiteConverterを使って，MCUで利
用可能なTensorFlow™ Liteモデルに変換する。
⑸　C/C++コードへの変換　　TensorFlow™ Liteモデ

ルを，実装時にコンパイルできるように，microTVMや
TensorFlow™ Lite for Microcontrollers（TFLM）な
どのオープンソースツールを用いてC/C++コードに変
換する。
⑹　クロスコンパイル　　C/C++コードを，gccなどの
コンパイルのツールでクロスコンパイルし，ターゲット
MCUに書き込む。
2.2　MCU向けAI開発環境
MCU向けAI開発には，移植性，拡張性，効率性を支
援する堅牢（けんろう）な環境が必要である。当社は，モデ
ルの実装プロセスを統合し，OSSを活用して開発を支援す
るツールパッケージをAI開発環境としてサンプル提供する
予定である。
この開発環境は，“学習”，“圧縮”，“コード変換”，“コン
パイル”の四つの要素で構成され，用途に応じてアプリケー
ション開発ツールパッケージと圧縮ツールパッケージに分か
れる。
2.2.1　アプリケーション開発ツールパッケージ
このパッケージは，MCU向けAI開発全般で使用するた
めのスクリプトファイルや，マニュアルを提供する。対象のサ
ンプルアプリケーションと公開データベースを用い，マニュ
アルに従った操作により，モデルの学習からMCU上での推
論プログラムの実行までについてAI開発を試行できる。
また，サンプルアプリケーションには，人物検出・キー
ワード検出・異常検知があり，ユーザーが自身の利用目的
に近いパターンを選んでモデルを作成し，自身のモデルと置
き換えて開発できるようになっている。
2.2.2　圧縮ツールパッケージ
このパッケージは，モデル圧縮に使用するスクリプトファイ
ルやマニュアルを含み，リソース制約のある組み込みデバイス
へモデルを展開するために用いる。ここでは，TensorFlow™

により，モデルのメモリー使用量と計算負荷を削減しつつ，
精度を維持することに重点を置く。モデルの圧縮とファイン
チューニング（既存の学習済みモデルを生かしながら，新し
い学習データにあわせて一部の重み係数を微調整すること）
を通じて，精度を維持しながらモデルサイズを縮小すること
で，組み込みデバイスでも高い性能を発揮する。

3．従来のモデル圧縮技術

3.1　モデル圧縮の重要性
一般に，モデルは数百万の重み係数を持つことが多く，

そのままMCUに組み込むのは難しい。メモリー使用量と計
算能力に限りのあるMCUにモデルを展開するためには，圧
縮は不可欠である。

図1．MCU向けAI開発の手順と対応するツールの関係
各手順ではOSSツールを活用でき，当社のAI開発環境（ツールパッケー
ジ）はこれらのツール利用手法などがまとめられている。
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3.2　従来の圧縮手法
従来の圧縮手法としては，プルーニング（Pruning）と知
識蒸留（Knowledge Distillation）がある。
プルーニングは，不要な重み係数などを削除して，モデ
ルのサイズと複雑さを削減する技術であり，特に組み込みシ
ステムにおいて，効率性の向上と電力消費の低減に寄与す
る。個々の重み係数を削除してスパース（疎）な行列を作
成する非構造化プルーニングと，重要度に基づき，フィル
ター，チャネル，又は層全体を削除する構造化プルーニン
グがある。構造化プルーニングはモデルの規則性を保ち，
ハードウェアの負担を減らせるが，精度を維持するためには
ファインチューニングが必要である。
また，知識蒸留は，大規模で複雑なモデル（教師モデル）
の内容を，小さなモデル（生徒モデル）で学習することで，
より小さく効率的なモデルを構築する手法である。

4．TT分解に基づくモデル圧縮技術

学習可能なTT分解ネットワークであるTTD-Net（Train-
able Tensor Train Decomposition Network）を用いたモ
デル圧縮技術を，更なるモデルサイズ削減を目指して開発
している。
4.1　TT分解ネットワーク
TT分解は，大規模な重み係数テンソルを一連の小さな
TTに分解することで次元を削減する手法である。この手法
は，重み係数の拡張性と，モデルの表現力を維持できると
いう利点がある。一方で，重み係数テンソルの再構成が不
完全であることによる精度の劣化や，モデル構造に適応しな
いままTT分解を適用した場合，実行する浮動小数点演算
の総量を示す指標であるFLOPs（Floating-Point Opera-
tions）の削減効果が限定的になる，という問題点がある。
そこで，この問題点を克服するTTD-Netを提案する。
4.2　TT分解の数式
d次元テンソルAが与えられたとき，TT分解は，式⑴の

ように，それを低ランクのTTコアの連鎖に分解する⑵。

A{i1,i2,......,id}=G1[i1]×G2[i2]× ......×Gd[id]

A ：d次元テンソル（A (n1×n2×...×nd)）
Gj：次元 (r( j‒1)×nj×rj ) の TT コア
 （r0=1，及び rd=1
 r1, r2, ..., r(d‒1)：TT ランクであり，
 圧縮率を制御するパラメーター）  

⑴

このように分解した複数のTTコアに対して，モデル圧縮
のための処理を施していく。

4.3　TTD-Net フレームワーク
TTD-Netは，体系的な層単位の圧縮パイプラインとして
機能し，事前に学習済みの畳み込みニューラルネットワーク
（CNN：Convolution Neural Network）を，低メモリー
消費かつ高速推論に最適化された圧縮モデルへと変換す
る。このフレームワークにより，重み係数の数の大幅な削
減，計算の高速化，そして最小限の精度低下の実現が可
能となり，エッジデバイス上でのリアルタイムAI推論に最適
なモデルが作成できる。
4.3.1　畳み込み層のTT分解
標準的な畳み込み層の重み係数は，式⑵のような4次元

テンソルMに格納されている。

M  ℝ(N×C×H×W)

M：畳み込み層の重み係数（4次元テンソル）
N：出力特徴マップ（フィルター）の数
C：入力チャネルの数
H，W：カーネルの空間的なサイズ（高さと幅）

 

⑵

TTD-Netでは，このMを適切な高次元形式に再構成し，
式⑶のように四つのTTコアに分解する。

M → （A1,A2,A3,A4）  ⑶

それぞれのTTコアは，元の重み係数テンソルと異なる構
成であるが，構造的要素は保持する（図2）。
4.3.2　選択的TTコア保持と再構成
TTD-Netでは，四つのTTコア全てを使用するのではな

く，最初の二つのTTコア（A1とA2）だけを選択・保持し，
A3とA4は破棄する。近似された重み係数テンソルM̂は，
式⑷のように再構成される（図2）。

M̂ = A1[N,r1] × A2[r1,C,H,W]  ⑷

ここで，r1は最初の分解ステージ後におけるTTのランク
である。この処理で，重み係数の数と乗算の複雑さが大幅
に削減されるが，誤差（精度低下）が増える。
4.3.3　ファインチューニングによる誤差補償
破棄されたTTコアによる精度低下を補うために，保持

されたTTコアA1とA2は，学習可能な重み係数をファイン
チューニングによって調整する。Mを教師モデル，M̂を生徒
モデルとし，MSE（平均二乗誤差）に基づきファインチュー
ニングしたM̂ ftとすることにより，特徴表現が元の形に近い
状態まで復元され，圧縮されたモデルが元のモデルに近い
精度となる（図2）。

  SPECIAL REPORTS 

MCUへのAI実装に向けたAI開発環境とモデル圧縮技術 43



4.3.4　モデル構成の置き換え
ファインチューニング後，A1は低次元の畳み込みカーネ
ルA1ftとして，A2はカーネルサイズが1×1の畳み込みA2ftと
して実装される。この置き換えにより，重み係数が削減され
ることで演算量が減り，推論演算処理速度が向上する。こ
の処理は，複数ある畳み込み層の全てに対して繰り返され，
圧縮されたCNNが得られる。
4.4　評価結果
著名なニューラルネットワーク構造を実装したモデル定
義の一つであるResNet-18アーキテクチャーに対して，検
証用の画像データであるCIFAR-10データセットを用い，
TTD-Netを評価した。ここでは，圧縮係数αの値を変えて，

メモリーサイズの圧縮率，計算効率（FLOPsの削減率），
精度とのトレードオフを検証した（表1，図3）。
αを増加させることで，圧縮率と計算効率は一貫して向
上するが，一方で，精度が低下する。したがって，ター
ゲットとなる組み込みシステムの制約に合わせてαを選択す
る必要がある。
4.5　結論
TTD-Netを用いた圧縮は，TT分解，選択的TTコア保
持と再構成，ファインチューニングによる誤差補償を統合す
ることで，圧縮率，計算効率，精度維持のバランスを実現
できる。
このフレームワークは，AI適用対象の要件に応じて，精

図3．TTD-Netのメモリーサイズ削減の評価結果
αの選定により，メモリーサイズと精度が変わるため，ターゲットの組み込み
システムに応じて，αを調整することが必要である。
Evaluation of relationship between TTD-Net compression coeff icient 

and memory size
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表1．TTD-Netを使用したモデル圧縮の評価結果
Performance evaluation results of AI model compressed by TTD-Net

α（圧縮係数）
使用メモ
リーサイズ
（Miバイト）

圧縮率＊1
（%）

FLOPs
（百万）

FLOPs
削減率＊2
（%）

精度
（%）

精度差分
（低下）＊3
（ポイント）

ベースモデル 42.70 - 556.65 - 95.38 -

4 12.46 29.18 161.34 71.02 94.95 0.43

6 8.30 19.44 105.90 80.98 94.45 0.93

8 6.32 14.80 84.79 84.77 93.96 1.42

10 5.07 11.87 71.76 87.11 93.50 1.88

12 4.23 9.91 64.18 88.47 92.94 2.44

14 3.67 8.59 59.33 89.34 92.33 3.05

16 3.30 7.73 56.86 89.79 92.31 3.07

18 2.65 6.21 52.21 90.62 91.19 4.19

Mi：メビ（220）
＊1：圧縮モデルの使用メモリーサイズをベースモデルの使用メモリーサイズで除算し，

割合表示とした値
＊2：ベースモデルのFLOPsから圧縮モデルのFLOPsを差し引いた値を，ベースモデル

のFLOPsで除算し，割合表示とした値
＊3：ベースモデルの精度から圧縮モデルの精度を差し引いた値

図2．TTD-Netのフレームワーク
学習済みCNNをTT分解後，重要度の高いTTコアを抽出し，ファインチューニングにより精度を復元して，圧縮したモデルを作成する。
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度低下を少なくすることを優先した圧縮を選択することや，
精度低下を抑えつつ中程度の圧縮を選択することなどが可
能であり，様々なAI適用対象に対して柔軟に対応可能な
AI開発環境を提供できる。

5．あとがき

当社は，MCUへのAI実装の有用性に着目し，AI実装
に必要な要素をAI開発環境として構築した。また，学習可
能なTT分解ネットワークに基づくモデル圧縮技術を開発し，
AI推論精度の維持と，モデルサイズ・計算負荷の削減を可
能にした。更に，圧縮係数αの適切な選択によって，圧縮
率・計算効率・精度を考慮した柔軟なAIモデルの開発が
可能であることを確認した。
圧縮性・効率面・精度面において柔軟性を考慮したAI
開発環境は，今後，増えていくMCUへのAI実装に不可欠
であり，MCUの更なる利活用に貢献する。このようなMCU
へのAI実装に備え，環境構築を進めていく。
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