

IEEE Int'l Workshop on Ising Machines (Invited) 10:30~11:00, Apr. 17, 2024

Simulated bifurcation machines

Enabling NP-hard optimization-based judgement in real-time systems by quantum-inspired technology

Kosuke Tatsumura

Toshiba Corporation, JAPAN

Outline

Introduction

01 Using quantum-inspired optimization technology in real-time systems

02 Simulated bifurcation machine (SBM): theory, implementation & performance

Real-time systems with Simulated bifurcation machines (SBMs):
 Finance and Automotive vehicle

Combinatorial optimization

Economically important but computationally hard

Practical problems decision-making, planning, etc Finance Manufacture Medicine Management 9 Material Logistics

Nondeterministic polynomial time (NP)-hard

From the viewpoint of system engineering: Making rational judgment in the situation/at the moment

Ising machine

Special-purpose computer for combinatorial optimization

Ising problem

search for the lowest-*E* state of Ising model

 $\boldsymbol{E} = -\sum \boldsymbol{j}_{ij}\boldsymbol{s}_i\boldsymbol{s}_j + \sum \boldsymbol{h}_i\boldsymbol{s}_i$

Mapping^{#1}

Combinatorial optimization (Quadratic discrete optimization)

Quantum-inspired optimization technology

*1 <u>H. Goto *et al.*, *Sci. Adv.* **5**, eaav2372, '19
*2 <u>H. Goto *et al.*, *Sci. Adv.* **7**, eabe7953, '21
*3 <u>K. Tatsumura *et al.*, *Nat. Ele.* **4**, 208–217, '21
*4 T. Kashimata *et al.*, *IEEE Access* **12**, '24
</u></u></u>

Simulated Bifurcation Machine, SBM

Algorithm

Quantum-inspired

Quantum bifurcation machine

in a quantum principle

Discovery

Simulated bifurcation algorithm

in a new classical principle

Highly parallelizable

Implementation High performance^{*1,2} single-chip

Application

Very practical

edge/embedded

cloud

Innovative

ex. real-time systems

© 2024 Toshiba Corporation

Edge application of <u>SBM</u> Simulated bifurcation machine

*1 K. Tatsumura et al., "FPGA-Based Simulated Bifurcation Machine," IEEE Field-Programmable Logic and Apps. (FPL), 2019

*2 K. Tatsumura, "Large-scale combinatorial optimization in real-time systems by FPGA-based accelerators for simulated bifurcation," *Int'l Symp. on Highly Efficient Accelerators and Reconfigurable Technologies* (HEART), 2021

Enables <u>real-time</u> systems that make more rational judgments^{*1,2}

Constrains in the time domain

Real-time system

- Must respond within the critically defined time constrain
- Respond time needed for "high-speed" real-time systems: Typically less than 1 ms
- (Conventional) simple conditional-judgement
 Financial trading Automotive Vehicle

bn

Real-time system with embeddable SBM

Outline

Introduction

01 Using quantum-inspired optimization technology in real-time systems

02 Simulated bifurcation machine (SBM): theory, implementation & performance

Real-time systems with Simulated bifurcation machines (SBMs):
 Finance and Automotive vehicle

SB theory: How it was born

*1 <u>H. Goto et al., Scientific Reports 6, 21686 (2016)</u> *2 <u>H. Goto et al., Science Advances 5, eaav2372 (2019)</u>

Quantum-inspired algorithm

Quantum Bifurcation (QB) machine*1

 $H_q(t) = \hbar \sum_{i=1}^{N} \left| \frac{K}{2} a_i^{\dagger 2} a_i \right|$

Hamiltonian describing adiabatic bifurcation process in a nonlinear oscillator network

Classical Bifurcation (CB) machine

classicization of state variables

$$H_{c}(\mathbf{x}, \mathbf{y}, t) = \sum_{i=1}^{N} \left[\frac{K}{4} (x_{i}^{2} + y_{i}^{2})^{2} - \frac{p(t)}{2} (x_{i}^{2} - y_{i}^{2}) + \frac{\Delta_{i}}{2} (x_{i}^{2} + y_{i}^{2}) \right] - \frac{\xi_{0}}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} J_{i,j} (x_{i}x_{j} + y_{i}y_{j})$$

algorithmic twist for speed-up

Simulated Bifurcation (SB) algorithm (2019)*2

Classicizing QB that works in a quantum principle...? Why SB works? What principle? There was a discovery

Combinatorial optimization based on quantum adiabatic theorem

quantum interference quantum superposition quantum bifurcation

SB theory: Why it works

*1 <u>H. Goto et al., Science Advances 5, eaav2372 (2019)</u>
*2 <u>G. Finocchio et al., Nano Futures 8, 012001 (2024)</u>
*3 <u>H. Goto et al., Science Advances 7, eabe7953 (2021)</u>
*4 <u>T. Kanao et al., Comm. Phys. 5, 153 (2022)</u>
*5 T. Kanao et al., Applied Physics Express 16, 014501(2023)

New classical principle: Adiabatic and ergodic search*1

Implying *classical* adiabatic theorem (corresponding to quantum adiabatic theorem)^{*2} has been extended to 2nd-gen SB^{*3}, heat-assisted SB^{*4}, and higher-order SB^{*5}

© 2024 Toshiba Corporation

SB algorithm: How it works

*1 Time-evolution simulation of *N*-particle systems with long-range pairwise interaction, like celestial systems with gravitational interaction or molecular systems with Coulomb interaction

"N-body"-type algorithmic structure^{*1} \rightarrow Highly parallelizable

© 2024 Toshiba Corporation

SB algorithm : Characteristics

*1 FPGA (Field programmable gate array), GPU (Graphic processing unit), NPU (Neural processing unit), ASIC (application specific integrated circuit)

More parallelizable than SA, Can be accelerated with FPGAs/GPUs/NPUs

	SA simulated annealing	SB simulated bifurca	ation	R-NN recurrent neural network	N-body gravitational (/Coulomb)-force	
Structure	Sequential updating	Parallel updating	position momentum S_1 S_2 S_2 S_2 S_2 S_2 S_2 S_3 S_N	neuron neuron (1) (2)	position momentum (f_{1}, f_{2}) $(f_{2}, f$	
Parallelism	O(N)	O(<i>N</i> ²)				
More parallelizableIntensive memory access J/W matrix (NxN matrix)Very similarMore PEs per chip						
SB can be accelerated with FPGAs/GPUs (not limited to special ASICs) Many AI chips (NPUs) are beneficial also to SB						

*1 <u>K. Tatsumura et al., "FPGA-Based Simulated Bifurcation</u> Machine," *IEEE Field-Programmable Logic and Apps.* (FPL), 2019

FPGA-based accelerator for SB^{*1}

Large-scale, massively parallel, and high utilization

Temporal parallelization

Problem	complete-graph		
Trobiem	MAX-CUT		
Machine size	4,096 spins full spin-spin connectivity		
Architecture			
Pr/Pc/Pb	32/32/8		
# of MAC PEs	8,192	F	
Effective activity	92%		
Resource			
ALM	40%		
BRAM	56%		
DSP	7%		
System Clock	[MHz]		
Fsys	269		

#PEs > N
(not achievable for SA)

Performance^{*1} (2019)

Faster and more efficient than the state-of-the-art one

Performance^{*1} (2021)

Comprehensive comparison → Very competitive with state-of-the-art Ising machines

Competitors SB: Simulated bifurcation QA: Quantum annealer CIM: Coherent Ising machine DA: Digital annealer SimCIM: Simulated CIM RBM: Restricted Boltzmann machine MA: Momentum annealing

Outline

Introduction

01 Using quantum-inspired optimization technology in real-time systems

02 Simulated bifurcation machine (SBM): theory, implementation & performance

Real-time systems with Simulated bifurcation machines (SBMs):
 Finance and Automotive vehicle

*1 Toshiba's website "SQBM+™" https://www.global.toshiba/ww/products-solutions/ai-iot/sbm.html

Application of <u>SBMs</u>*1 Simulated bifurcation machines

for Edge (high-speed real-time) and Cloud (large/wide-area)

Embeddable <u>SBM</u> Simulated bifurcation machine

*1 K. Tatsumura et al., "FPGA-Based Simulated Bifurcation Machine," *IEEE Field-Programmable Logic and Apps.* (FPL), 2019

*2 K. Tatsumura, "Large-scale combinatorial optimization in real-time systems by FPGA-based accelerators for simulated bifurcation," Int'l Symp. on Highly Efficient Accelerators and Reconfigurable Technologies (HEART), 2021

Enabling <u>NP-hard optimization</u> in real-time systems

FPGA-based SBMs

Ultralow latency (sub-msec) Deterministic latency

2 Custom I/F

3. (No software interrupt)

Predetermined #step

FPGA

SBM

Applications in Finance

#1 The world's first demonstration of systems that execute unprecedented stock trading strategies based on computationally-hard quadratic discrete optimization by using quantum-inspired computer *1 https://doi.org/10.1109/ISCAS45731.2020.9181114

- *2 https://doi.org/10.1109/ACCESS.2023.3316727
- *3 https://doi.org/10.1109/ACCESS.2023.3326816

*4 https://doi.org/10.1109/ACCESS.2023.3341422

New strategies based on detection of ever-untargeted trading opportunities by SBMs

Even if your strategy is splendid, if there is a competitor executing the same one, you may lose Traders are essentially *technology-hungry*, pursuing a new strategy by new technologies

*1 <u>K. Tatsumura et al., "Real-time Trading System based on Selections of Potentially Profitable, Uncorrelated,</u> and Balanced Stocks by NP-hard Combinatorial Optimization," *IEEE Access* **11**, pp. 120023 - 120033 (2023).

System –High-speed basket trade^{*1}-

Real-time trading system with embedded SBM (164µs latency), installed at the <u>JPX Co-location area</u> of the <u>TSE</u> special area for high-speed trading TOKYO Stock Exchange

🕒 2024 TOSHIDA COLPOLACION

Demonstration at the Tokyo Stock Exchange

Execution capability of NP-hard optimization-based trading strategy through real-time/real-money transactions

Strategy & System	Extended pair-trade ^{*1}	High-speed basket trade ^{*2}		
	real-time pairs-trade system	real-time trading system based on discrete optimization s excutor real-time trading system based on discrete optimization anagement chrift and discrete optimization and anagement chrift and discrete optimization cost of the provide the cost of the cost		
Real-time transactions vs. backsimulation assuming 100% fill rate <i>Execution at intended</i> <i>prices & volumes</i>	$G_{\text{odd}} = \frac{10^{4}}{10^{4}} + \frac{10^{4}}{1$	Good agreement \rightarrow Proof of the execution capability in terms of speed		
System-wide latency	33 μSec for 210-pair universe	164 μSec for 128-stock universe		
Sharpe ratio (annualized return/risk)	0.79 (=7.5% / 9.5%)	1.23 (=3.6% / 2.9%)		
Cumulative amounts of transaction	3,817,201,458 JPY (Total)4 billion JPY transaction 1000-hour no-error operation	ons, 118,956,828 JPY		
Real-time trading hours	125 days or 750 hours (No errors)	42 days or 252 hours (No errors)		

Strategy –High-speed basket trade*1-

*1 <u>K. Tatsumura et al., "Real-time Trading System based on Selections of</u> <u>Potentially Profitable, Uncorrelated, and Balanced Stocks by NP-hard</u> <u>Combinatorial Optimization," *IEEE Access* **11**, pp. 120023 - 120033 (2023). *2 VWAP: Volume-Weighted Average Price</u>

Select a delta-neutral basket of stocks to maximize return and minimize correlation (risk) for improving Sharpe ratio

Applications in Automotive vehicle*1

*1 K. Oya et al., "Proposal and prototyping of automotive computing platform with Quantum inspired Processing Unit", Trans. of Society of Automotive Engineers of Japan 54, pp. 1216-1221 (2023). <u>https://doi.org/10.11351/jsaeronbun.54.1216</u> https://trid.trb.org/View/2270193

Toward autonomous car/driving-support tech that quickly and optimally respond to surrounding situation

© 2024 Toshiba Corporation

Multiple Object Tracking with <u>SBM</u>*1 Simulated bifurcation machine

*1 K. Oya et al., "Proposal and prototyping of automotive computing platform with Quantum inspired Processing Unit", Trans. of Society of Automotive Engineers of Japan 54, pp. 1216-1221 (2023). https://doi.org/10.11351/isaeronbun.54.1216

Flexible matching functions by SBMs to realize tracking through multiple long-term occlusion events

Extended MOT **QUBO** formulation •Execute SBM *twice* while changing the •Matching between *Detections* and (k-1) frame k frame penalty weight (c) for prohibiting double-Trackers match •Detect the occurrences & locations of Maximize Prohibiting occlusion events double-match intersections $H_{QUBO} = \sum \left[\sum Q_{i,j} = H_{cost} + c H_{penalty} \right]$ Camera/AI (*k*-1) frame k frame Detections w/o occlusion with occlusions (#Detections=#Trackers) (#Detections<#Trackers) Match matching info (SBM) To realize tracking of d2 objects through multiple Prediction Correction Correctior long-term occlusion events one-to-one one-to-many Trackers matching matching

Demonstration*1

*1 K. Oya et al., "Proposal and prototyping of automotive computing platform with Quantum inspired Processing Unit", Trans. of Society of Automotive Engineers of Japan 54, pp. 1216-1221 (2023). https://doi.org/10.11351/jsaeronbun.54.1216

System throughput of 20 FPS and SBM-unique functions with vehicle-mountable FPGA boards

Vehicle-mountable boards

of MAC-PE

Time per SBM run

512 spins

2,048

284 µS

Throughput (>10FPS)

 Table 3.
 Tracking performance of SORT with matching

 methods of Hungarian and SBM on MOT benchmark sequences⁽¹⁹⁾

	M	OT alg	orithm	Matc	hing	MOTA	4↑	HOTA↑	
	Or	iginal	SORT	Hung	arian	48.7	7	44.80	-
	Or	riginal	SORT	SB	M	48.7	6	44.83	_
			F		Rectan result, indicat *This privacy	gles ind and Ve es Trac image protec	dicate ectors eking is pro tion.	es Detects in Recta result. occessed f	tion angle 'or
1	120						MOT	17-02 (1)
Sm	100						MOT	17-02 (2)
ne[80						MOT	17-02 (4	ý
k ti	60						MOT	17-02 (5	5)
trac	40								
t &	20	al contract		Atten	A. A.	S. 81		A	• 1
de	20	-				-	N _{ation}		
		1	101	201	301 frame	40 ID	1	501	

Fig.7 Evaluation result of processing time of prototype

System throughput of approx. 20 FPS

SBM-unique function

Fig.8 Function demonstration result of tracking through occlusion Flexible matching functions for tracking through multiple long-term occlusion events

Summary

Simulated bifurcation machines

Simulated bifurcation (SB):

•quantum-inspired, highly-parallelizable algorithm for combinatorial optimization •Can be accelerated with FPGAs/GPUs/NPUs \rightarrow Very practical

High-speed real-time systems that make more rational judgments •enabled by embeddable SBMs, for *innovative applications*

Demonstration

Financial trading

Execution capability of NP-hard optimization-based trading strategy through real-time/real-money transactions

Automotive vehicle

System throughput of 20 FPS (frames per second) and SBM-unique functions with vehicle-mountable FPGA boards

For further information

*1 Toshiba's website "SQBM+TM" <u>https://www.global.toshiba/ww/products-solutions/ai-iot/sbm.html</u> SQBM+TM: (Commercial service) Quantum-inspired Optimization Solution based on SBM technology

Search by "SQBM+"

List of Papers, Presentation slides, Manuals

The Slides of *this* presentation are available

Appendix

Appendix

*1 <u>K. Tatsumura *et al., Nat. Ele.* **4**, 208–217, '21</u> *2 (for 2nd gen) <u>T. Kashimata *et al., IEEE Access* **12**, '24</u>

Scalability^{*1} (2021)

Scaling out Ising machines with full spin-to-spin connectivity

*1 <u>K. Tatsumura *et al.*, *Nat. Ele.* **4**, 208–217, '21</u> *2 (for 2nd gen) <u>T. Kashimata *et al.*, *IEEE Access* **12**, '24</u>

Scalability^{*1} (2021)

Multi-chip architecture based on partitioned SB

Bidirectional ring-network cluster without any centralized features

autonomous, homogeneous and symmetric

Autonomous synchronization mechanism (No clock-sharing, No central-HUB)

Time

*1 <u>K. Tatsumura *et al.*, *Nat. Ele.* **4**, 208–217, '21</u> *2 (for 2nd gen) <u>T. Kashimata *et al.*, *IEEE Access* **12**, '24</u>

Scalability^{*1} (2021)

Good strong-scaling & weal-scaling charactersitics

Throughput enhancement to the vicinity of an ideal upper limit determined by the communication tech.

Constant-efficiency scaling at the maximized computation parallelism (at the strong scaling limit)

High-speed real-time trading

Trading system for cross-currency arbitrage^{*1}

Optimal path search in a directed graph (a typical combinatorial problem)

Arbitrage Problem find a closed path that maximizes the profit Cost function

$$Profit = \prod_{i,j \in path} r_{i,j}$$

Constraint

Must be a closed path

Ising (QUBO) formulation

$$C_{tot} = m_c C + m_p P$$

$$C' = \prod r_{i,j}^{b_{i,j}} - w_{i,j} = -\log r_{i,j} \rightarrow C = \sum w_{i,j} b_{i,j}$$

$$P = \sum_i \sum_{j \neq j'} b_{i,j} b_{i,j'} + \sum_j \sum_{i \neq i'} b_{i,j} b_{i',j} + \sum_i \left(\sum_j b_{i,j} - \sum_j b_{j,i}\right)^2 + \sum_{i,j} b_{i,j} b_{j,i}$$

High-speed real-time trading

Trading system for cross-currency arbitrage^{*1}

Foreign Arbitrage system exchange market SB accelerator ´¥)≳(\$ Optimal path Good approx. solution search problem (¥)≳(€ 30 microseconds Order (\$)⋧(€` packet Line handler (5) 2 Market (\$)**⋛(**CAD packet FPGA 10Gb Ethernet cable

An end-to-end FPGA-based arbitrage system

-①Custom I/F (feed handler)

captures market feeds at unscheduled intervals

②Exchange rate manager

updates an NxN *wij* matrix, outputs all weights in a single clock

3SB accelerator

searches for an optimal path from all possible paths (4) Trading engine prepares order packets (5) Custom I/F (line handler)

issues the order packets

High-speed real-time trading

Trading system for cross-currency arbitrage^{*1}

<30 µs system-wide latency & 91% Top-1 probability

